M. G. Chernysheva, G. A. Badun, A. G. Popov, I. S. Chashchin, N. M. Anuchina, A. V. Panchenko
{"title":"纳米金刚石-溶菌酶-米拉米星复合材料的制备及其在心脏瓣膜假体中的应用前景","authors":"M. G. Chernysheva, G. A. Badun, A. G. Popov, I. S. Chashchin, N. M. Anuchina, A. V. Panchenko","doi":"10.1134/S1061933X23600987","DOIUrl":null,"url":null,"abstract":"<p>Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to <i>Staphylococcus aureus</i>. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 1","pages":"120 - 129"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Nanodiamond–Lysozyme–Miramistin Composite and Prospects of Its Application in Heart Valve Prosthetics\",\"authors\":\"M. G. Chernysheva, G. A. Badun, A. G. Popov, I. S. Chashchin, N. M. Anuchina, A. V. Panchenko\",\"doi\":\"10.1134/S1061933X23600987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to <i>Staphylococcus aureus</i>. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"86 1\",\"pages\":\"120 - 129\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X23600987\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23600987","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation of Nanodiamond–Lysozyme–Miramistin Composite and Prospects of Its Application in Heart Valve Prosthetics
Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to Staphylococcus aureus. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.