M. G. Chernysheva, G. A. Badun, A. G. Popov, I. S. Chashchin, N. M. Anuchina, A. V. Panchenko
{"title":"纳米金刚石-溶菌酶-米拉米星复合材料的制备及其在心脏瓣膜假体中的应用前景","authors":"M. G. Chernysheva, G. A. Badun, A. G. Popov, I. S. Chashchin, N. M. Anuchina, A. V. Panchenko","doi":"10.1134/S1061933X23600987","DOIUrl":null,"url":null,"abstract":"<p>Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to <i>Staphylococcus aureus</i>. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Nanodiamond–Lysozyme–Miramistin Composite and Prospects of Its Application in Heart Valve Prosthetics\",\"authors\":\"M. G. Chernysheva, G. A. Badun, A. G. Popov, I. S. Chashchin, N. M. Anuchina, A. V. Panchenko\",\"doi\":\"10.1134/S1061933X23600987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to <i>Staphylococcus aureus</i>. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X23600987\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23600987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of Nanodiamond–Lysozyme–Miramistin Composite and Prospects of Its Application in Heart Valve Prosthetics
Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to Staphylococcus aureus. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.