A. G. Bykov, M. A. Panaeva, A. R. Rafikova, N. A. Volkov, A. A. Vanin
{"title":"成分和温度对肺脂混合单层动态特性的影响","authors":"A. G. Bykov, M. A. Panaeva, A. R. Rafikova, N. A. Volkov, A. A. Vanin","doi":"10.1134/S1061933X23601142","DOIUrl":null,"url":null,"abstract":"<p>The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 1","pages":"14 - 22"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids\",\"authors\":\"A. G. Bykov, M. A. Panaeva, A. R. Rafikova, N. A. Volkov, A. A. Vanin\",\"doi\":\"10.1134/S1061933X23601142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"86 1\",\"pages\":\"14 - 22\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X23601142\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23601142","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids
The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.