成分和温度对肺脂混合单层动态特性的影响

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
A. G. Bykov, M. A. Panaeva, A. R. Rafikova, N. A. Volkov, A. A. Vanin
{"title":"成分和温度对肺脂混合单层动态特性的影响","authors":"A. G. Bykov, M. A. Panaeva, A. R. Rafikova, N. A. Volkov, A. A. Vanin","doi":"10.1134/s1061933x23601142","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids\",\"authors\":\"A. G. Bykov, M. A. Panaeva, A. R. Rafikova, N. A. Volkov, A. A. Vanin\",\"doi\":\"10.1134/s1061933x23601142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s1061933x23601142\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s1061933x23601142","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要肺表面活性物质的主要成分是二棕榈酰基磷脂酰胆碱(DPPC),当肺部表面受到压缩时,它能将表面张力几乎降至零,从而防止肺泡在呼气过程中塌陷。这项研究采用表面流变学的方法来确定六种肺脂质在不同温度和较大表面张力范围内对 DPPC 单层动态表面特性的影响。我们特别关注了温度为 25 和 35°С 时的低表面张力区域(低于 25 mN/m),这些条件接近肺内表面的生理状态。添加分子结构与 DPPC 相似的脂类不会对 25°C 温度下的动态表面特性产生显著影响。同时,在 35°С 的低表面张力区域,添加这些脂类会增加表面弹性。然而,在这些条件下,表层中含有不饱和碳氢化合物自由基的脂类会产生相反的效果,阻碍在缓慢压缩过程中实现低表面张力。研究结果表明,可以控制脂质/DPC 混合单层的特性,并将其视为肺表面活性物质的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids

Influence of Composition and Temperature on Dynamic Properties of Mixed Monolayers of Pulmonary Lipids

Abstract

The main component of pulmonary surfactant is dipalmitoyl phosphatidylcholine (DPPC), which reduces the surface tension almost to zero when the lung surface is compressed, thus preventing the alveolus from collapse in the course of exhalation. In this work the methods of the surface rheology have been employed to determine the influence of six pulmonary lipids on the dynamic surface properties of a DPPC monolayer at different temperatures and in a wide range of surface tensions. Particular attention has been paid to the region of low surface tensions (lower than 25 mN/m) at temperatures of 25 and 35°С, with these conditions being close to the physiological state on the internal surface of lungs. The addition of lipids with similar molecular structures to DPPC does not affect significantly the dynamic surface properties at a temperature of 25°C. At the same time, the addition of these lipids increases the surface elasticity in the region of low surface tensions at 35°С. However, under these conditions, the presence of lipids with unsaturated hydrocarbon radicals in the surface layer leads to the opposite effect and hinders the achievement of low surface tensions during slow compression. The results obtained have shown the possibility to control the properties of the lipid/DPPC mixed monolayer, which can be considered which can be considered as a model of pulmonary surfactant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信