关于三维欧拉方程能量守恒的三个结果

{"title":"关于三维欧拉方程能量守恒的三个结果","authors":"","doi":"10.1007/s00030-024-00924-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider the 3D Euler equations for incompressible homogeneous fluids and we study the problem of energy conservation for weak solutions in the space-periodic case. First, we prove the energy conservation for a full scale of Besov spaces, by extending some classical results to a wider range of exponents. Next, we consider the energy conservation in the case of conditions on the gradient, recovering some results which were known, up to now, only for the Navier–Stokes equations and for weak solutions of the Leray-Hopf type. Finally, we make some remarks on the Onsager singularity problem, identifying conditions which allow to pass to the limit from solutions of the Navier–Stokes equations to solution of the Euler ones, producing weak solutions which are energy conserving.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three results on the energy conservation for the 3D Euler equations\",\"authors\":\"\",\"doi\":\"10.1007/s00030-024-00924-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We consider the 3D Euler equations for incompressible homogeneous fluids and we study the problem of energy conservation for weak solutions in the space-periodic case. First, we prove the energy conservation for a full scale of Besov spaces, by extending some classical results to a wider range of exponents. Next, we consider the energy conservation in the case of conditions on the gradient, recovering some results which were known, up to now, only for the Navier–Stokes equations and for weak solutions of the Leray-Hopf type. Finally, we make some remarks on the Onsager singularity problem, identifying conditions which allow to pass to the limit from solutions of the Navier–Stokes equations to solution of the Euler ones, producing weak solutions which are energy conserving.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00924-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00924-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了不可压缩均质流体的三维欧拉方程,并研究了空间周期情况下弱解的能量守恒问题。首先,我们通过将一些经典结果扩展到更宽的指数范围,证明了全尺度 Besov 空间的能量守恒。接下来,我们考虑了梯度条件下的能量守恒,恢复了一些迄今为止只针对纳维-斯托克斯方程和勒雷-霍普夫类型弱解的已知结果。最后,我们就昂萨格奇点问题发表了一些评论,确定了从纳维-斯托克斯方程的解到欧拉方程的解的极限条件,产生了能量守恒的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three results on the energy conservation for the 3D Euler equations

Abstract

We consider the 3D Euler equations for incompressible homogeneous fluids and we study the problem of energy conservation for weak solutions in the space-periodic case. First, we prove the energy conservation for a full scale of Besov spaces, by extending some classical results to a wider range of exponents. Next, we consider the energy conservation in the case of conditions on the gradient, recovering some results which were known, up to now, only for the Navier–Stokes equations and for weak solutions of the Leray-Hopf type. Finally, we make some remarks on the Onsager singularity problem, identifying conditions which allow to pass to the limit from solutions of the Navier–Stokes equations to solution of the Euler ones, producing weak solutions which are energy conserving.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信