{"title":"论希尔伯特 C * 模块中连续框架的扰动","authors":"Hadi Ghasemi, Tayebe Lal Shateri","doi":"10.1515/gmj-2023-2111","DOIUrl":null,"url":null,"abstract":"In the present paper, we examine the perturbation of continuous frames and Riesz-type frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We extend the Casazza–Christensen general perturbation theorem for Hilbert space frames to continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We obtain a necessary condition under which the perturbation of a Riesz-type frame of Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules remains to be a Riesz-type frame. Also, we examine the effect of duality on the perturbation of continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules, and we prove that if the operator frame of a continuous frame <jats:italic>F</jats:italic> is near to the combination of the synthesis operator of a continuous Bessel mapping <jats:italic>G</jats:italic> and the analysis operator of <jats:italic>F</jats:italic>, then <jats:italic>G</jats:italic> is a continuous frame.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On perturbation of continuous frames in Hilbert C *-modules\",\"authors\":\"Hadi Ghasemi, Tayebe Lal Shateri\",\"doi\":\"10.1515/gmj-2023-2111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we examine the perturbation of continuous frames and Riesz-type frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We extend the Casazza–Christensen general perturbation theorem for Hilbert space frames to continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We obtain a necessary condition under which the perturbation of a Riesz-type frame of Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules remains to be a Riesz-type frame. Also, we examine the effect of duality on the perturbation of continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules, and we prove that if the operator frame of a continuous frame <jats:italic>F</jats:italic> is near to the combination of the synthesis operator of a continuous Bessel mapping <jats:italic>G</jats:italic> and the analysis operator of <jats:italic>F</jats:italic>, then <jats:italic>G</jats:italic> is a continuous frame.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了希尔伯特 C * {C^{*}} 模块中连续框架和里兹型框架的扰动。 -模块中的连续帧和里兹型帧的扰动。我们将希尔伯特空间帧的卡萨扎-克里斯滕森一般扰动定理推广到希尔伯特 C * {C^{*}} 模块中的连续帧。 -模块中的连续帧。我们得到了一个必要条件,在这个条件下,希尔伯特 C * {C^{*}} 模块的李斯型帧的扰动仍然是一个李斯型帧。 -模块的里兹型框架的扰动仍然是里兹型框架的必要条件。此外,我们还考察了对偶性对希尔伯特 C * {C^{*}} 模块中连续帧的扰动的影响。 -模块的扰动的影响,并证明如果连续帧 F 的算子帧接近于连续贝塞尔映射 G 的合成算子与 F 的分析算子的组合,那么 G 就是一个连续帧。
On perturbation of continuous frames in Hilbert C *-modules
In the present paper, we examine the perturbation of continuous frames and Riesz-type frames in Hilbert C*{C^{*}}-modules. We extend the Casazza–Christensen general perturbation theorem for Hilbert space frames to continuous frames in Hilbert C*{C^{*}}-modules. We obtain a necessary condition under which the perturbation of a Riesz-type frame of Hilbert C*{C^{*}}-modules remains to be a Riesz-type frame. Also, we examine the effect of duality on the perturbation of continuous frames in Hilbert C*{C^{*}}-modules, and we prove that if the operator frame of a continuous frame F is near to the combination of the synthesis operator of a continuous Bessel mapping G and the analysis operator of F, then G is a continuous frame.