论希尔伯特 C * 模块中连续框架的扰动

IF 0.8 4区 数学 Q2 MATHEMATICS
Hadi Ghasemi, Tayebe Lal Shateri
{"title":"论希尔伯特 C * 模块中连续框架的扰动","authors":"Hadi Ghasemi, Tayebe Lal Shateri","doi":"10.1515/gmj-2023-2111","DOIUrl":null,"url":null,"abstract":"In the present paper, we examine the perturbation of continuous frames and Riesz-type frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We extend the Casazza–Christensen general perturbation theorem for Hilbert space frames to continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We obtain a necessary condition under which the perturbation of a Riesz-type frame of Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules remains to be a Riesz-type frame. Also, we examine the effect of duality on the perturbation of continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2111_eq_0167.png\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules, and we prove that if the operator frame of a continuous frame <jats:italic>F</jats:italic> is near to the combination of the synthesis operator of a continuous Bessel mapping <jats:italic>G</jats:italic> and the analysis operator of <jats:italic>F</jats:italic>, then <jats:italic>G</jats:italic> is a continuous frame.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On perturbation of continuous frames in Hilbert C *-modules\",\"authors\":\"Hadi Ghasemi, Tayebe Lal Shateri\",\"doi\":\"10.1515/gmj-2023-2111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we examine the perturbation of continuous frames and Riesz-type frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We extend the Casazza–Christensen general perturbation theorem for Hilbert space frames to continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules. We obtain a necessary condition under which the perturbation of a Riesz-type frame of Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules remains to be a Riesz-type frame. Also, we examine the effect of duality on the perturbation of continuous frames in Hilbert <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2023-2111_eq_0167.png\\\" /> <jats:tex-math>{C^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules, and we prove that if the operator frame of a continuous frame <jats:italic>F</jats:italic> is near to the combination of the synthesis operator of a continuous Bessel mapping <jats:italic>G</jats:italic> and the analysis operator of <jats:italic>F</jats:italic>, then <jats:italic>G</jats:italic> is a continuous frame.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2111\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2111","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了希尔伯特 C * {C^{*}} 模块中连续框架和里兹型框架的扰动。 -模块中的连续帧和里兹型帧的扰动。我们将希尔伯特空间帧的卡萨扎-克里斯滕森一般扰动定理推广到希尔伯特 C * {C^{*}} 模块中的连续帧。 -模块中的连续帧。我们得到了一个必要条件,在这个条件下,希尔伯特 C * {C^{*}} 模块的李斯型帧的扰动仍然是一个李斯型帧。 -模块的里兹型框架的扰动仍然是里兹型框架的必要条件。此外,我们还考察了对偶性对希尔伯特 C * {C^{*}} 模块中连续帧的扰动的影响。 -模块的扰动的影响,并证明如果连续帧 F 的算子帧接近于连续贝塞尔映射 G 的合成算子与 F 的分析算子的组合,那么 G 就是一个连续帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On perturbation of continuous frames in Hilbert C *-modules
In the present paper, we examine the perturbation of continuous frames and Riesz-type frames in Hilbert C * {C^{*}} -modules. We extend the Casazza–Christensen general perturbation theorem for Hilbert space frames to continuous frames in Hilbert C * {C^{*}} -modules. We obtain a necessary condition under which the perturbation of a Riesz-type frame of Hilbert C * {C^{*}} -modules remains to be a Riesz-type frame. Also, we examine the effect of duality on the perturbation of continuous frames in Hilbert C * {C^{*}} -modules, and we prove that if the operator frame of a continuous frame F is near to the combination of the synthesis operator of a continuous Bessel mapping G and the analysis operator of F, then G is a continuous frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信