堆积曲线上的高度和定量运算

Brett Nasserden, Stanley Yao Xiao
{"title":"堆积曲线上的高度和定量运算","authors":"Brett Nasserden, Stanley Yao Xiao","doi":"10.4153/s0008414x24000075","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the theory of heights in a family of stacky curves following recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky version of a conjecture of Vojta is equivalent to the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240219131415699-0390:S0008414X24000075:S0008414X24000075_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$abc$</span></span></img></span></span>-conjecture.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heights and quantitative arithmetic on stacky curves\",\"authors\":\"Brett Nasserden, Stanley Yao Xiao\",\"doi\":\"10.4153/s0008414x24000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the theory of heights in a family of stacky curves following recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky version of a conjecture of Vojta is equivalent to the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240219131415699-0390:S0008414X24000075:S0008414X24000075_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$abc$</span></span></img></span></span>-conjecture.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们按照埃伦伯格、萨特里阿诺和祖雷克-布朗的最新研究成果,对堆积曲线族中的高度理论进行了研究。我们首先给出了一个高度的基本构造,可以看出这个高度与他们的高度是对偶的。我们计算了在特定堆叠曲线上具有有界 ESZ-B 高度的有理点,回答了埃伦伯格、萨特里阿诺和祖雷克-布朗的一个问题。我们还证明了当堆叠曲线的欧拉特征为非正值时,来自反正交除数类的 ESZ-B 高度不具有诺斯科特性质。我们证明了沃伊塔猜想的堆积版本等价于 $abc$ 猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heights and quantitative arithmetic on stacky curves

In this paper, we investigate the theory of heights in a family of stacky curves following recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky version of a conjecture of Vojta is equivalent to the $abc$-conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信