通过贝尔多项式解析函数微分方程

IF 0.8 4区 数学 Q2 MATHEMATICS
Diego Caratelli, Pierpaolo Natalini, Paolo Emilio Ricci
{"title":"通过贝尔多项式解析函数微分方程","authors":"Diego Caratelli, Pierpaolo Natalini, Paolo Emilio Ricci","doi":"10.1515/gmj-2024-2005","DOIUrl":null,"url":null,"abstract":"It is shown how to approximate the solution of functional differential equations in terms of Bell’s polynomials. Some numerical checks are shown, by using the computer algebra system Mathematica<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi /> <m:mi mathvariant=\"normal\">©</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2005_eq_0181.png\" /> <jats:tex-math>{{}^{\\copyright}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"286 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic solution to functional differential equations via Bell’s polynomials\",\"authors\":\"Diego Caratelli, Pierpaolo Natalini, Paolo Emilio Ricci\",\"doi\":\"10.1515/gmj-2024-2005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown how to approximate the solution of functional differential equations in terms of Bell’s polynomials. Some numerical checks are shown, by using the computer algebra system Mathematica<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi /> <m:mi mathvariant=\\\"normal\\\">©</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2005_eq_0181.png\\\" /> <jats:tex-math>{{}^{\\\\copyright}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"286 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2005\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

它展示了如何用贝尔多项式近似求函数微分方程的解。通过使用计算机代数系统 Mathematica © {{}^{copyright} 进行一些数值检验。} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic solution to functional differential equations via Bell’s polynomials
It is shown how to approximate the solution of functional differential equations in terms of Bell’s polynomials. Some numerical checks are shown, by using the computer algebra system Mathematica © {{}^{\copyright}} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信