{"title":"将 QDST 算法应用于无限势阱中的薛定谔粒子模拟","authors":"Marcin Ostrowski","doi":"10.1140/epjqt/s40507-024-00223-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines whether a quantum computer can efficiently simulate the time evolution of the Schrödinger particle in a one-dimensional infinite potential well. In order to solve the Schrödinger equation in the quantum register, an algorithm based on the Quantum Discrete Sine Transform (QDST) is applied. The paper compares the results obtained in this way with the results given by the previous method (based on the QFT algorithm).</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00223-3","citationCount":"0","resultStr":"{\"title\":\"Application of the QDST algorithm for the Schrödinger particle simulation in the infinite potential well\",\"authors\":\"Marcin Ostrowski\",\"doi\":\"10.1140/epjqt/s40507-024-00223-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines whether a quantum computer can efficiently simulate the time evolution of the Schrödinger particle in a one-dimensional infinite potential well. In order to solve the Schrödinger equation in the quantum register, an algorithm based on the Quantum Discrete Sine Transform (QDST) is applied. The paper compares the results obtained in this way with the results given by the previous method (based on the QFT algorithm).</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00223-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00223-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00223-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Application of the QDST algorithm for the Schrödinger particle simulation in the infinite potential well
This paper examines whether a quantum computer can efficiently simulate the time evolution of the Schrödinger particle in a one-dimensional infinite potential well. In order to solve the Schrödinger equation in the quantum register, an algorithm based on the Quantum Discrete Sine Transform (QDST) is applied. The paper compares the results obtained in this way with the results given by the previous method (based on the QFT algorithm).
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.