增量、填充和集群

IF 2.4 1区 数学 Q1 MATHEMATICS
Honghao Gao, Linhui Shen, Daping Weng
{"title":"增量、填充和集群","authors":"Honghao Gao, Linhui Shen, Daping Weng","doi":"10.1007/s00039-024-00673-y","DOIUrl":null,"url":null,"abstract":"<p>We investigate positive braid Legendrian links via a Floer-theoretic approach and prove that their augmentation varieties are cluster K<sub>2</sub> (aka. <span>\\(\\mathcal{A}\\)</span>-) varieties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al. (J. Eur. Math. Soc. 18(11):2627–2689, 2016), we prove that a large family of exact Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of their augmentation varieties. We solve the infinite-filling problem for positive braid Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE, it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentations, Fillings, and Clusters\",\"authors\":\"Honghao Gao, Linhui Shen, Daping Weng\",\"doi\":\"10.1007/s00039-024-00673-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate positive braid Legendrian links via a Floer-theoretic approach and prove that their augmentation varieties are cluster K<sub>2</sub> (aka. <span>\\\\(\\\\mathcal{A}\\\\)</span>-) varieties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al. (J. Eur. Math. Soc. 18(11):2627–2689, 2016), we prove that a large family of exact Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of their augmentation varieties. We solve the infinite-filling problem for positive braid Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE, it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00673-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00673-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过弗洛尔理论的方法研究了正辫状线的 Legendrian 链接,并证明了它们的增量品种是簇 K2(又名\(\mathcal{A}\)-)品种。利用埃克霍尔姆等人 (J. Eur. Math.) 的 Legendrian 链接的精确拉格朗日协整 (Lagrangian cobordisms)Math.18(11):2627-2689,2016),我们证明了正辫状 Legendrian 链的精确拉格朗日填充的一大族对应于其增强品种的簇种子。我们解决了正辫状 Legendrian 链接的无穷填充问题;也就是说,只要正辫状 Legendrian 链接不是 ADE 类型,它就会在哈密尔顿等同性之前接纳无穷多个精确拉格朗日填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Augmentations, Fillings, and Clusters

Augmentations, Fillings, and Clusters

We investigate positive braid Legendrian links via a Floer-theoretic approach and prove that their augmentation varieties are cluster K2 (aka. \(\mathcal{A}\)-) varieties. Using the exact Lagrangian cobordisms of Legendrian links in Ekholm et al. (J. Eur. Math. Soc. 18(11):2627–2689, 2016), we prove that a large family of exact Lagrangian fillings of positive braid Legendrian links correspond to cluster seeds of their augmentation varieties. We solve the infinite-filling problem for positive braid Legendrian links; i.e., whenever a positive braid Legendrian link is not of type ADE, it admits infinitely many exact Lagrangian fillings up to Hamiltonian isotopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信