在办案条件下验证用于法证自动语音识别的 ECAPA-TDNN 系统

IF 2.4 3区 计算机科学 Q2 ACOUSTICS
Francesco Sigona, Mirko Grimaldi
{"title":"在办案条件下验证用于法证自动语音识别的 ECAPA-TDNN 系统","authors":"Francesco Sigona,&nbsp;Mirko Grimaldi","doi":"10.1016/j.specom.2024.103045","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we tested different variants of a Forensic Automatic Speaker Recognition (FASR) system based on Emphasized Channel Attention, Propagation and Aggregation in Time Delay Neural Network (ECAPA-TDNN). To this scope, conditions reflecting those of a real forensic voice comparison case have been taken into consideration according to the <em>forensic_eval_01</em> evaluation campaign settings. Using this recent neural model as an embedding extraction block, various normalization strategies at the level of embeddings and scores allowed us to observe the variations in system performance in terms of discriminating power, accuracy and precision metrics. Our findings suggest that the ECAPA-TDNN can be successfully used as a base component of a FASR system, managing to surpass the previous state of the art, at least in the context of the considered operating conditions.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"158 ","pages":"Article 103045"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167639324000177/pdfft?md5=4a1c2390e5be4931eca4de00e7d357e7&pid=1-s2.0-S0167639324000177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Validation of an ECAPA-TDNN system for Forensic Automatic Speaker Recognition under case work conditions\",\"authors\":\"Francesco Sigona,&nbsp;Mirko Grimaldi\",\"doi\":\"10.1016/j.specom.2024.103045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we tested different variants of a Forensic Automatic Speaker Recognition (FASR) system based on Emphasized Channel Attention, Propagation and Aggregation in Time Delay Neural Network (ECAPA-TDNN). To this scope, conditions reflecting those of a real forensic voice comparison case have been taken into consideration according to the <em>forensic_eval_01</em> evaluation campaign settings. Using this recent neural model as an embedding extraction block, various normalization strategies at the level of embeddings and scores allowed us to observe the variations in system performance in terms of discriminating power, accuracy and precision metrics. Our findings suggest that the ECAPA-TDNN can be successfully used as a base component of a FASR system, managing to surpass the previous state of the art, at least in the context of the considered operating conditions.</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"158 \",\"pages\":\"Article 103045\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167639324000177/pdfft?md5=4a1c2390e5be4931eca4de00e7d357e7&pid=1-s2.0-S0167639324000177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639324000177\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639324000177","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们测试了基于时延神经网络(ECAPA-TDNN)的强调通道注意、传播和聚合的法证自动语音识别(FASR)系统的不同变体。为此,根据 forensic_eval_01 评估活动的设置,考虑了反映真实法证语音比对案例的条件。使用这个最新的神经模型作为嵌入提取块,在嵌入和分数层面采用各种归一化策略,使我们能够观察到系统在辨别力、准确度和精确度指标方面的性能变化。我们的研究结果表明,ECAPA-TDNN 可以成功地用作 FASR 系统的基础组件,至少在所考虑的运行条件下,它能够超越以前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of an ECAPA-TDNN system for Forensic Automatic Speaker Recognition under case work conditions

In this work, we tested different variants of a Forensic Automatic Speaker Recognition (FASR) system based on Emphasized Channel Attention, Propagation and Aggregation in Time Delay Neural Network (ECAPA-TDNN). To this scope, conditions reflecting those of a real forensic voice comparison case have been taken into consideration according to the forensic_eval_01 evaluation campaign settings. Using this recent neural model as an embedding extraction block, various normalization strategies at the level of embeddings and scores allowed us to observe the variations in system performance in terms of discriminating power, accuracy and precision metrics. Our findings suggest that the ECAPA-TDNN can be successfully used as a base component of a FASR system, managing to surpass the previous state of the art, at least in the context of the considered operating conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信