用深度学习识别纯睾丸精原细胞瘤的亚型

IF 1.9 Q3 PATHOLOGY
Clinical Pathology Pub Date : 2024-02-18 eCollection Date: 2024-01-01 DOI:10.1177/2632010X241232302
Kirill E Medvedev, Paul H Acosta, Liwei Jia, Nick V Grishin
{"title":"用深度学习识别纯睾丸精原细胞瘤的亚型","authors":"Kirill E Medvedev, Paul H Acosta, Liwei Jia, Nick V Grishin","doi":"10.1177/2632010X241232302","DOIUrl":null,"url":null,"abstract":"<p><p>The most critical step in the clinical diagnosis workflow is the pathological evaluation of each tumor sample. Deep learning is a powerful approach that is widely used to enhance diagnostic accuracy and streamline the diagnosis process. In our previous study using omics data, we identified 2 distinct subtypes of pure seminoma. Seminoma is the most common histological type of testicular germ cell tumors (TGCTs). Here we developed a deep learning decision making tool for the identification of seminoma subtypes using histopathological slides. We used all available slides for pure seminoma samples from The Cancer Genome Atlas (TCGA). The developed model showed an area under the ROC curve of 0.896. Our model not only confirms the presence of 2 distinct subtypes within pure seminoma but also unveils the presence of morphological differences between them that are imperceptible to the human eye.</p>","PeriodicalId":53204,"journal":{"name":"Clinical Pathology","volume":"17 ","pages":"2632010X241232302"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Subtypes Identification of Pure Seminoma of the Testis.\",\"authors\":\"Kirill E Medvedev, Paul H Acosta, Liwei Jia, Nick V Grishin\",\"doi\":\"10.1177/2632010X241232302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most critical step in the clinical diagnosis workflow is the pathological evaluation of each tumor sample. Deep learning is a powerful approach that is widely used to enhance diagnostic accuracy and streamline the diagnosis process. In our previous study using omics data, we identified 2 distinct subtypes of pure seminoma. Seminoma is the most common histological type of testicular germ cell tumors (TGCTs). Here we developed a deep learning decision making tool for the identification of seminoma subtypes using histopathological slides. We used all available slides for pure seminoma samples from The Cancer Genome Atlas (TCGA). The developed model showed an area under the ROC curve of 0.896. Our model not only confirms the presence of 2 distinct subtypes within pure seminoma but also unveils the presence of morphological differences between them that are imperceptible to the human eye.</p>\",\"PeriodicalId\":53204,\"journal\":{\"name\":\"Clinical Pathology\",\"volume\":\"17 \",\"pages\":\"2632010X241232302\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2632010X241232302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2632010X241232302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

临床诊断工作流程中最关键的一步是对每个肿瘤样本进行病理评估。深度学习是一种强大的方法,被广泛用于提高诊断准确性和简化诊断流程。在我们之前利用 omics 数据进行的研究中,我们发现了纯精原细胞瘤的 2 个不同亚型。精原细胞瘤是睾丸生殖细胞肿瘤(TGCTs)中最常见的组织学类型。在此,我们开发了一种深度学习决策工具,用于利用组织病理切片识别精原细胞瘤亚型。我们使用了癌症基因组图谱(TCGA)中纯精原细胞瘤样本的所有可用切片。开发的模型显示 ROC 曲线下面积为 0.896。我们的模型不仅证实了纯精原细胞瘤中存在两种截然不同的亚型,还揭示了它们之间存在肉眼难以察觉的形态学差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Subtypes Identification of Pure Seminoma of the Testis.

The most critical step in the clinical diagnosis workflow is the pathological evaluation of each tumor sample. Deep learning is a powerful approach that is widely used to enhance diagnostic accuracy and streamline the diagnosis process. In our previous study using omics data, we identified 2 distinct subtypes of pure seminoma. Seminoma is the most common histological type of testicular germ cell tumors (TGCTs). Here we developed a deep learning decision making tool for the identification of seminoma subtypes using histopathological slides. We used all available slides for pure seminoma samples from The Cancer Genome Atlas (TCGA). The developed model showed an area under the ROC curve of 0.896. Our model not only confirms the presence of 2 distinct subtypes within pure seminoma but also unveils the presence of morphological differences between them that are imperceptible to the human eye.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Pathology
Clinical Pathology PATHOLOGY-
CiteScore
2.20
自引率
7.70%
发文量
66
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信