Christopher S. Campomizzi, Patil Pranita Uttamrao, Jack J. Stallone, Thenmalarchelvi Rathinavelan and D. Fernando Estrada*,
{"title":"天冬酰胺-85 稳定了结核分枝杆菌 CYP121A1 活性位点水网络结构。","authors":"Christopher S. Campomizzi, Patil Pranita Uttamrao, Jack J. Stallone, Thenmalarchelvi Rathinavelan and D. Fernando Estrada*, ","doi":"10.1021/acs.biochem.3c00555","DOIUrl":null,"url":null,"abstract":"<p >The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon–carbon bond between the two phenol groups of dicyclotyrosine (cYY) in <i>Mycobacterium tuberculosis</i> (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of <sup>19</sup>F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"63 5","pages":"711–722"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asparagine-85 Stabilizes a Structural Active Site Water Network in CYP121A1 of Mycobacterium tuberculosis\",\"authors\":\"Christopher S. Campomizzi, Patil Pranita Uttamrao, Jack J. Stallone, Thenmalarchelvi Rathinavelan and D. Fernando Estrada*, \",\"doi\":\"10.1021/acs.biochem.3c00555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon–carbon bond between the two phenol groups of dicyclotyrosine (cYY) in <i>Mycobacterium tuberculosis</i> (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of <sup>19</sup>F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\"63 5\",\"pages\":\"711–722\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.3c00555\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.3c00555","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Asparagine-85 Stabilizes a Structural Active Site Water Network in CYP121A1 of Mycobacterium tuberculosis
The cytochrome P450 enzyme CYP121A1 endogenously catalyzes the formation of a carbon–carbon bond between the two phenol groups of dicyclotyrosine (cYY) in Mycobacterium tuberculosis (Mtb). One of 20 CYP enzymes in Mtb, CYP121A1 continues to garner significant interest as a potential drug target. The accompanying reports the use of 19F NMR spectroscopy, reconstituted activity assays, and molecular dynamics simulations to investigate the significance of hydrogen bonding interactions that were theorized to stabilize a static active site water network. The active site residue Asn-85, whose hydrogen bonds with the diketopiperazine ring of cYY contributes to a contiguous active site water network in the absence of cYY, was mutated to a serine (N85S) and to a glutamine (N85Q). These conservative changes in the hydrogen bond donor side chain result in inactivation of the enzyme. Moreover, the N85S mutation induces reverse type-I binding as measured by absorbance difference spectra. NMR spectra monitoring the ligand-adaptive FG-loop and the active site Trp-182 side chain confirm that disruption of the active site water network also significantly alters the structure of the active site. These data were consistent with dynamics simulations of N85S and N85Q that demonstrate that a compromised water network is responsible for remodeling of the active site B-helix and a repositioning of cYY toward the heme. These findings implicate a slowly exchanging water network as a critical factor in CYP121A1 function and a likely contributor to the unusual rigidity of the structure.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.