论受到随机冲击的相干系统的生存问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dheeraj Goyal, Nil Kamal Hazra, Maxim Finkelstein
{"title":"论受到随机冲击的相干系统的生存问题","authors":"Dheeraj Goyal, Nil Kamal Hazra, Maxim Finkelstein","doi":"10.1007/s11009-024-10077-y","DOIUrl":null,"url":null,"abstract":"<p>We consider coherent systems subject to random shocks that can damage a random number of components of a system. Based on the distribution of the number of failed components, we discuss three models, namely, (<i>i</i>) a shock can damage any number of components (including zero) with the same probability, (<i>ii</i>) each shock damages, at least, one component, and (<i>iii</i>) a shock can damage, at most, one component. Shocks arrival times are modeled using three important counting processes, namely, the Poisson generalized gamma process, the Poisson phase-type process and the renewal process with matrix Mittag-Leffler distributed inter-arrival times. For the defined shock models, we discuss relevant reliability properties of coherent systems. An optimal replacement policy for repairable systems is considered as an application of the proposed modeling.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Survival of Coherent Systems Subject to Random Shocks\",\"authors\":\"Dheeraj Goyal, Nil Kamal Hazra, Maxim Finkelstein\",\"doi\":\"10.1007/s11009-024-10077-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider coherent systems subject to random shocks that can damage a random number of components of a system. Based on the distribution of the number of failed components, we discuss three models, namely, (<i>i</i>) a shock can damage any number of components (including zero) with the same probability, (<i>ii</i>) each shock damages, at least, one component, and (<i>iii</i>) a shock can damage, at most, one component. Shocks arrival times are modeled using three important counting processes, namely, the Poisson generalized gamma process, the Poisson phase-type process and the renewal process with matrix Mittag-Leffler distributed inter-arrival times. For the defined shock models, we discuss relevant reliability properties of coherent systems. An optimal replacement policy for repairable systems is considered as an application of the proposed modeling.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10077-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10077-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是受到随机冲击的相干系统,这些冲击会损坏系统中随机数量的组件。根据失效组件数量的分布,我们讨论了三种模型,即 (i) 冲击可以以相同的概率损坏任意数量的组件(包括零),(ii) 每个冲击至少损坏一个组件,以及 (iii) 一个冲击最多损坏一个组件。冲击到达时间使用三种重要的计数过程建模,即泊松广义伽马过程、泊松相位型过程和具有矩阵 Mittag-Leffler 分布的到达间时间的更新过程。针对定义的冲击模型,我们讨论了相干系统的相关可靠性特性。可修复系统的最优替换策略被视为所提模型的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Survival of Coherent Systems Subject to Random Shocks

On Survival of Coherent Systems Subject to Random Shocks

We consider coherent systems subject to random shocks that can damage a random number of components of a system. Based on the distribution of the number of failed components, we discuss three models, namely, (i) a shock can damage any number of components (including zero) with the same probability, (ii) each shock damages, at least, one component, and (iii) a shock can damage, at most, one component. Shocks arrival times are modeled using three important counting processes, namely, the Poisson generalized gamma process, the Poisson phase-type process and the renewal process with matrix Mittag-Leffler distributed inter-arrival times. For the defined shock models, we discuss relevant reliability properties of coherent systems. An optimal replacement policy for repairable systems is considered as an application of the proposed modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信