RSPSSL:一种新型高保真拉曼光谱预处理方案,用于增强生物医学应用和化学分辨率可视化。

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy
Jiaqi Hu, Gina Jinna Chen, Chenlong Xue, Pei Liang, Yanqun Xiang, Chuanlun Zhang, Xiaokeng Chi, Guoying Liu, Yanfang Ye, Dongyu Cui, De Zhang, Xiaojun Yu, Hong Dang, Wen Zhang, Junfan Chen, Quan Tang, Penglai Guo, Ho-Pui Ho, Yuchao Li, Longqing Cong, Perry Ping Shum
{"title":"RSPSSL:一种新型高保真拉曼光谱预处理方案,用于增强生物医学应用和化学分辨率可视化。","authors":"Jiaqi Hu, Gina Jinna Chen, Chenlong Xue, Pei Liang, Yanqun Xiang, Chuanlun Zhang, Xiaokeng Chi, Guoying Liu, Yanfang Ye, Dongyu Cui, De Zhang, Xiaojun Yu, Hong Dang, Wen Zhang, Junfan Chen, Quan Tang, Penglai Guo, Ho-Pui Ho, Yuchao Li, Longqing Cong, Perry Ping Shum","doi":"10.1038/s41377-024-01394-5","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"52"},"PeriodicalIF":19.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876988/pdf/","citationCount":"0","resultStr":"{\"title\":\"RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization.\",\"authors\":\"Jiaqi Hu, Gina Jinna Chen, Chenlong Xue, Pei Liang, Yanqun Xiang, Chuanlun Zhang, Xiaokeng Chi, Guoying Liu, Yanfang Ye, Dongyu Cui, De Zhang, Xiaojun Yu, Hong Dang, Wen Zhang, Junfan Chen, Quan Tang, Penglai Guo, Ho-Pui Ho, Yuchao Li, Longqing Cong, Perry Ping Shum\",\"doi\":\"10.1038/s41377-024-01394-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"13 1\",\"pages\":\"52\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01394-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01394-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

拉曼光谱具有分子指纹识别能力,在许多科学和技术领域的材料分析中具有巨大潜力。拉曼光谱也是一种新兴的全息技术,可用于新陈代谢分析,打造精准医疗。然而,精确归因于特定环境、仪器和试样噪声的振动峰是一个难题。智能拉曼光谱预处理可消除统计偏差噪声和样本相关误差,为有价值的信息提取提供了强有力的工具。在此,我们提出了一种基于自监督学习(RSPSSL)的新型拉曼光谱预处理方案,具有高容量和光谱保真度。它无需进一步训练,就能以每秒约 1 900 个光谱的速度预处理任意拉曼光谱,且不受人为干扰。实验数据预处理试验证明了其出色的处理能力和信号保真度,与现有技术相比,均方根误差降低了 88%,无限法误差降低了 60%([计算公式:见正文])。凭借这一优势,它显著提高了各种生物医学应用的准确性,在癌症诊断中提高了 400% 的准确率(ΔAUC),在百草枯浓度预测中平均提高了 38%(少数几个镜头)和 242% 的准确率,并提高了生物医学高光谱图像的化学分辨率,尤其是在光谱指纹区域。它精确地预处理了来自不同光谱设备、实验室和不同应用领域的各种拉曼光谱。该方案将在高通量、跨设备、各种分析物复杂性和多样化应用的情况下,利用无标记体积分子成像工具对生物体和疾病代谢组学分析进行生物医学机制筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization.

RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization.

Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信