对麦拉宁与微管蛋白结合模式的生化和硅学分析。

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gudapureddy Radha, Pratyush Pragyandipta, Pradeep Kumar Naik, Manu Lopus
{"title":"对麦拉宁与微管蛋白结合模式的生化和硅学分析。","authors":"Gudapureddy Radha, Pratyush Pragyandipta, Pradeep Kumar Naik, Manu Lopus","doi":"10.1080/07391102.2024.2317984","DOIUrl":null,"url":null,"abstract":"<p><p>Erastin (ERN) is a small molecule that induces different forms of cell death. For example, it has been reported to induce ferroptosis by disrupting tubulin subunits that maintain the voltage-dependent anion channels (VDACs) of mitochondria. Although its possible binding to tubulin has been suggested, the fine details of the interaction between ERN and tubulin are poorly understood. Using a combination of biochemical, cell-model and <i>in silico</i> approaches, we elucidate the interactions of ERN with tubulin and their biological manifestations. After confirming ERN's antiproliferative efficacy (IC<sub>50</sub>, 20 ± 3.2 M) and induction of cell death in the breast cancer cell line MDA-MB-231, the binding interactions of ERN with tubulin were examined. ERN bound to tubulin in a concentration-dependent manner, disorganizing the structural integrity of the protein, as substantiated <i>via</i> the tryptophan-quenching assay and the aniline-naphthalene sulfonate binding assay, respectively. <i>In silico</i> studies based on molecular docking revealed a docking score of -5.863 kcal/mol, suggesting strong binding interactions of ERN with tubulin. Additionally, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses evinced the binding free energy (ΔG<sub>binding</sub>) of -31.235 kcal/mol, substantiating strong binding affinity of ERN with tubulin. Ligplot analysis showed hydrogen bonding with specific amino acids (Asn A226, Thr A223, Gln B247 and Val B355). QikProp-based ADME (absorption, distribution, metabolism and excretion) assessment showed considerable therapeutic potential for ERN.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"6522-6529"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical and <i>in silico</i> analysis of the binding mode of erastin with tubulin.\",\"authors\":\"Gudapureddy Radha, Pratyush Pragyandipta, Pradeep Kumar Naik, Manu Lopus\",\"doi\":\"10.1080/07391102.2024.2317984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Erastin (ERN) is a small molecule that induces different forms of cell death. For example, it has been reported to induce ferroptosis by disrupting tubulin subunits that maintain the voltage-dependent anion channels (VDACs) of mitochondria. Although its possible binding to tubulin has been suggested, the fine details of the interaction between ERN and tubulin are poorly understood. Using a combination of biochemical, cell-model and <i>in silico</i> approaches, we elucidate the interactions of ERN with tubulin and their biological manifestations. After confirming ERN's antiproliferative efficacy (IC<sub>50</sub>, 20 ± 3.2 M) and induction of cell death in the breast cancer cell line MDA-MB-231, the binding interactions of ERN with tubulin were examined. ERN bound to tubulin in a concentration-dependent manner, disorganizing the structural integrity of the protein, as substantiated <i>via</i> the tryptophan-quenching assay and the aniline-naphthalene sulfonate binding assay, respectively. <i>In silico</i> studies based on molecular docking revealed a docking score of -5.863 kcal/mol, suggesting strong binding interactions of ERN with tubulin. Additionally, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses evinced the binding free energy (ΔG<sub>binding</sub>) of -31.235 kcal/mol, substantiating strong binding affinity of ERN with tubulin. Ligplot analysis showed hydrogen bonding with specific amino acids (Asn A226, Thr A223, Gln B247 and Val B355). QikProp-based ADME (absorption, distribution, metabolism and excretion) assessment showed considerable therapeutic potential for ERN.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"6522-6529\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2317984\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2317984","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

依拉斯汀(ERN)是一种能诱导不同形式细胞死亡的小分子。例如,有报道称它能通过破坏维持线粒体电压依赖性阴离子通道(VDAC)的微管蛋白亚基来诱导铁变态反应。虽然有人认为ERN可能与微管蛋白结合,但人们对ERN与微管蛋白之间相互作用的细节了解甚少。我们结合生化、细胞模型和硅学方法,阐明了ERN与微管蛋白的相互作用及其生物学表现。在确认ERN对乳腺癌细胞株MDA-MB-231具有抗增殖功效(IC50,20 ± 3.2 M)并诱导细胞死亡后,我们研究了ERN与小管蛋白的结合相互作用。色氨酸淬灭试验和苯胺-萘磺酸盐结合试验分别证实,ERN 与小管蛋白的结合具有浓度依赖性,会破坏蛋白质的结构完整性。基于分子对接的硅学研究显示,对接得分为-5.863 kcal/mol,表明ERN与小管蛋白的结合相互作用很强。此外,分子动力学模拟和分子力学泊松-波尔兹曼表面积(MM-PBSA)分析表明,结合自由能(ΔGbinding)为-31.235 kcal/mol,证实了ERN与小管蛋白的强结合亲和力。配位图分析表明,ERN 与特定氨基酸(Asn A226、Thr A223、Gln B247 和 Val B355)发生了氢键结合。基于 QikProp 的 ADME(吸收、分布、代谢和排泄)评估显示,ERN 具有相当大的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemical and in silico analysis of the binding mode of erastin with tubulin.

Erastin (ERN) is a small molecule that induces different forms of cell death. For example, it has been reported to induce ferroptosis by disrupting tubulin subunits that maintain the voltage-dependent anion channels (VDACs) of mitochondria. Although its possible binding to tubulin has been suggested, the fine details of the interaction between ERN and tubulin are poorly understood. Using a combination of biochemical, cell-model and in silico approaches, we elucidate the interactions of ERN with tubulin and their biological manifestations. After confirming ERN's antiproliferative efficacy (IC50, 20 ± 3.2 M) and induction of cell death in the breast cancer cell line MDA-MB-231, the binding interactions of ERN with tubulin were examined. ERN bound to tubulin in a concentration-dependent manner, disorganizing the structural integrity of the protein, as substantiated via the tryptophan-quenching assay and the aniline-naphthalene sulfonate binding assay, respectively. In silico studies based on molecular docking revealed a docking score of -5.863 kcal/mol, suggesting strong binding interactions of ERN with tubulin. Additionally, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses evinced the binding free energy (ΔGbinding) of -31.235 kcal/mol, substantiating strong binding affinity of ERN with tubulin. Ligplot analysis showed hydrogen bonding with specific amino acids (Asn A226, Thr A223, Gln B247 and Val B355). QikProp-based ADME (absorption, distribution, metabolism and excretion) assessment showed considerable therapeutic potential for ERN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信