Methaq Abid Said Klmohamed Almusawi, Vahid Pouresmaeil, Masoud Homayouni Tabrizi
{"title":"叶酸结合壳聚糖包裹的非诺阿魏酸载人血清白蛋白纳米粒子的抗癌和抗氧化作用","authors":"Methaq Abid Said Klmohamed Almusawi, Vahid Pouresmaeil, Masoud Homayouni Tabrizi","doi":"10.2174/0115665240283529240202095254","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several diseases, including cancer, can be effectively treated by altering the nanocarrier surfaces so that they are more likely to be targeted.</p><p><strong>Objective: </strong>This study aimed to prepare human albumin (HSA) nanoparticles containing Fenoferin (FN) modified with folic acid (FA) attached to Chitosan (CS) to improve its anti-cancer properties.</p><p><strong>Methods: </strong>Nanoparticles were first synthesized and surface modified. Their physicochemical properties were assessed by different methods, such as FESEM, FTIR, and DLS. In addition, the percentage of drug encapsulated was measured by indirect method. Besides evaluating the cytotoxic effects of nanoparticles using the MTT assay, the antioxidant capacity of FN-HSA-CS-FA was assessed using the ABTS and DPPH methods. Nanoparticles were also investigated for their anti-cancer effects by evaluating the expression of apoptosis and metastasis genes.</p><p><strong>Results: </strong>Based on this study, FN-HSA-CS-FA was 165.46 nm in size, and a uniform dispersion distribution was identified. Particles were reported to have a zeta potential of +29 mV, which is within the range of stable nanoparticles. Approximately 75% of FN is encapsulated in nanoparticles. Cytotoxic assay determined that liver cancer cells were most sensitive to treatment with an IC50 of 144 μg/ml. Inhibition of free radicals by nanoparticles is estimated to have an IC50 value of 195.23 and 964 μg/ml, for ABTS and DPPH, respectively. In the treatment with nanoparticles, flow cytometry results of arresting the cells in the SubG1 phase and real-time qPCR results indicated increased expression of caspases-3, caspase-8, and caspase-9 genes.</p><p><strong>Conclusion: </strong>According to this study, synthesized nanoparticles inhibited free radicals and activated apoptosis in liver cancer cells, and the capability of these nanoparticles to inhibit cancer cells was also confirmed. This formulation can, therefore, be used in preclinical studies to test the efficacy of the drug.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Cancer and Anti-Oxidant Effects of Fenoferin-loaded Human Serum Albumin Nanoparticles Coated with Folic Acid-bound Chitosan.\",\"authors\":\"Methaq Abid Said Klmohamed Almusawi, Vahid Pouresmaeil, Masoud Homayouni Tabrizi\",\"doi\":\"10.2174/0115665240283529240202095254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Several diseases, including cancer, can be effectively treated by altering the nanocarrier surfaces so that they are more likely to be targeted.</p><p><strong>Objective: </strong>This study aimed to prepare human albumin (HSA) nanoparticles containing Fenoferin (FN) modified with folic acid (FA) attached to Chitosan (CS) to improve its anti-cancer properties.</p><p><strong>Methods: </strong>Nanoparticles were first synthesized and surface modified. Their physicochemical properties were assessed by different methods, such as FESEM, FTIR, and DLS. In addition, the percentage of drug encapsulated was measured by indirect method. Besides evaluating the cytotoxic effects of nanoparticles using the MTT assay, the antioxidant capacity of FN-HSA-CS-FA was assessed using the ABTS and DPPH methods. Nanoparticles were also investigated for their anti-cancer effects by evaluating the expression of apoptosis and metastasis genes.</p><p><strong>Results: </strong>Based on this study, FN-HSA-CS-FA was 165.46 nm in size, and a uniform dispersion distribution was identified. Particles were reported to have a zeta potential of +29 mV, which is within the range of stable nanoparticles. Approximately 75% of FN is encapsulated in nanoparticles. Cytotoxic assay determined that liver cancer cells were most sensitive to treatment with an IC50 of 144 μg/ml. Inhibition of free radicals by nanoparticles is estimated to have an IC50 value of 195.23 and 964 μg/ml, for ABTS and DPPH, respectively. In the treatment with nanoparticles, flow cytometry results of arresting the cells in the SubG1 phase and real-time qPCR results indicated increased expression of caspases-3, caspase-8, and caspase-9 genes.</p><p><strong>Conclusion: </strong>According to this study, synthesized nanoparticles inhibited free radicals and activated apoptosis in liver cancer cells, and the capability of these nanoparticles to inhibit cancer cells was also confirmed. This formulation can, therefore, be used in preclinical studies to test the efficacy of the drug.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240283529240202095254\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240283529240202095254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Anti-Cancer and Anti-Oxidant Effects of Fenoferin-loaded Human Serum Albumin Nanoparticles Coated with Folic Acid-bound Chitosan.
Background: Several diseases, including cancer, can be effectively treated by altering the nanocarrier surfaces so that they are more likely to be targeted.
Objective: This study aimed to prepare human albumin (HSA) nanoparticles containing Fenoferin (FN) modified with folic acid (FA) attached to Chitosan (CS) to improve its anti-cancer properties.
Methods: Nanoparticles were first synthesized and surface modified. Their physicochemical properties were assessed by different methods, such as FESEM, FTIR, and DLS. In addition, the percentage of drug encapsulated was measured by indirect method. Besides evaluating the cytotoxic effects of nanoparticles using the MTT assay, the antioxidant capacity of FN-HSA-CS-FA was assessed using the ABTS and DPPH methods. Nanoparticles were also investigated for their anti-cancer effects by evaluating the expression of apoptosis and metastasis genes.
Results: Based on this study, FN-HSA-CS-FA was 165.46 nm in size, and a uniform dispersion distribution was identified. Particles were reported to have a zeta potential of +29 mV, which is within the range of stable nanoparticles. Approximately 75% of FN is encapsulated in nanoparticles. Cytotoxic assay determined that liver cancer cells were most sensitive to treatment with an IC50 of 144 μg/ml. Inhibition of free radicals by nanoparticles is estimated to have an IC50 value of 195.23 and 964 μg/ml, for ABTS and DPPH, respectively. In the treatment with nanoparticles, flow cytometry results of arresting the cells in the SubG1 phase and real-time qPCR results indicated increased expression of caspases-3, caspase-8, and caspase-9 genes.
Conclusion: According to this study, synthesized nanoparticles inhibited free radicals and activated apoptosis in liver cancer cells, and the capability of these nanoparticles to inhibit cancer cells was also confirmed. This formulation can, therefore, be used in preclinical studies to test the efficacy of the drug.
期刊介绍:
Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.