通过集成嵌套拉普拉斯逼近法建立多变量随机波动模型:多因素扩展

IF 1.1 Q3 ECONOMICS
João Pedro Coli de Souza Monteneri Nacinben, Márcio Laurini
{"title":"通过集成嵌套拉普拉斯逼近法建立多变量随机波动模型:多因素扩展","authors":"João Pedro Coli de Souza Monteneri Nacinben, Márcio Laurini","doi":"10.3390/econometrics12010005","DOIUrl":null,"url":null,"abstract":"This study introduces a multivariate extension to the class of stochastic volatility models, employing integrated nested Laplace approximations (INLA) for estimation. Bayesian methods for estimating stochastic volatility models through Markov Chain Monte Carlo (MCMC) can become computationally burdensome or inefficient as the dataset size and problem complexity increase. Furthermore, issues related to chain convergence can also arise. In light of these challenges, this research aims to establish a computationally efficient approach for estimating multivariate stochastic volatility models. We propose a multifactor formulation estimated using the INLA methodology, enabling an approach that leverages sparse linear algebra and parallelization techniques. To evaluate the effectiveness of our proposed model, we conduct in-sample and out-of-sample empirical analyses of stock market index return series. Furthermore, we provide a comparative analysis with models estimated using MCMC, demonstrating the computational efficiency and goodness of fit improvements achieved with our approach.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"31 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension\",\"authors\":\"João Pedro Coli de Souza Monteneri Nacinben, Márcio Laurini\",\"doi\":\"10.3390/econometrics12010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a multivariate extension to the class of stochastic volatility models, employing integrated nested Laplace approximations (INLA) for estimation. Bayesian methods for estimating stochastic volatility models through Markov Chain Monte Carlo (MCMC) can become computationally burdensome or inefficient as the dataset size and problem complexity increase. Furthermore, issues related to chain convergence can also arise. In light of these challenges, this research aims to establish a computationally efficient approach for estimating multivariate stochastic volatility models. We propose a multifactor formulation estimated using the INLA methodology, enabling an approach that leverages sparse linear algebra and parallelization techniques. To evaluate the effectiveness of our proposed model, we conduct in-sample and out-of-sample empirical analyses of stock market index return series. Furthermore, we provide a comparative analysis with models estimated using MCMC, demonstrating the computational efficiency and goodness of fit improvements achieved with our approach.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics12010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics12010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用集成嵌套拉普拉斯近似(INLA)进行估计,对随机波动率模型进行了多变量扩展。通过马尔可夫链蒙特卡罗(MCMC)估计随机波动率模型的贝叶斯方法,会随着数据集规模和问题复杂度的增加而变得计算繁重或效率低下。此外,还可能出现与链收敛相关的问题。鉴于这些挑战,本研究旨在建立一种计算高效的方法来估计多元随机波动率模型。我们提出了一种使用 INLA 方法估算的多因素公式,这种方法充分利用了稀疏线性代数和并行化技术。为了评估我们提出的模型的有效性,我们对股票市场指数收益序列进行了样本内和样本外实证分析。此外,我们还提供了与使用 MCMC 估算的模型的对比分析,证明了我们的方法在计算效率和拟合度方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension
This study introduces a multivariate extension to the class of stochastic volatility models, employing integrated nested Laplace approximations (INLA) for estimation. Bayesian methods for estimating stochastic volatility models through Markov Chain Monte Carlo (MCMC) can become computationally burdensome or inefficient as the dataset size and problem complexity increase. Furthermore, issues related to chain convergence can also arise. In light of these challenges, this research aims to establish a computationally efficient approach for estimating multivariate stochastic volatility models. We propose a multifactor formulation estimated using the INLA methodology, enabling an approach that leverages sparse linear algebra and parallelization techniques. To evaluate the effectiveness of our proposed model, we conduct in-sample and out-of-sample empirical analyses of stock market index return series. Furthermore, we provide a comparative analysis with models estimated using MCMC, demonstrating the computational efficiency and goodness of fit improvements achieved with our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信