无界薄域上随机延迟 p-Laplacian 方程的极限动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fuzhi Li, Dingshi Li, Mirelson M. Freitas
{"title":"无界薄域上随机延迟 p-Laplacian 方程的极限动力学","authors":"Fuzhi Li, Dingshi Li, Mirelson M. Freitas","doi":"10.1007/s43037-024-00326-0","DOIUrl":null,"url":null,"abstract":"<p>We study the long-term behavior of solutions for stochastic delay <i>p</i>-Laplacian equation with multiplicative noise on unbounded thin domains. We first prove the existence and uniqueness of tempered random attractors for these equations defined on <span>\\((n+1)\\)</span>-dimensional unbounded thin domains. Then, the upper semicontinuity of these attractors when a family of <span>\\((n+1)\\)</span>-dimensional thin domains degenerates onto an <i>n</i>-dimensional domain as the thinness measure approaches zero is established.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains\",\"authors\":\"Fuzhi Li, Dingshi Li, Mirelson M. Freitas\",\"doi\":\"10.1007/s43037-024-00326-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the long-term behavior of solutions for stochastic delay <i>p</i>-Laplacian equation with multiplicative noise on unbounded thin domains. We first prove the existence and uniqueness of tempered random attractors for these equations defined on <span>\\\\((n+1)\\\\)</span>-dimensional unbounded thin domains. Then, the upper semicontinuity of these attractors when a family of <span>\\\\((n+1)\\\\)</span>-dimensional thin domains degenerates onto an <i>n</i>-dimensional domain as the thinness measure approaches zero is established.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00326-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00326-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了无界薄域上具有乘法噪声的随机延迟 p-Laplacian 方程解的长期行为。我们首先证明了定义在((n+1)\)维无界薄域上的这些方程的有节制随机吸引子的存在性和唯一性。然后,当一个 \((n+1)\) -维薄域族退化到一个 n 维域上时,随着薄度度量趋近于零,这些吸引子的上半连续性被建立起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limiting dynamics for stochastic delay p-Laplacian equation on unbounded thin domains

We study the long-term behavior of solutions for stochastic delay p-Laplacian equation with multiplicative noise on unbounded thin domains. We first prove the existence and uniqueness of tempered random attractors for these equations defined on \((n+1)\)-dimensional unbounded thin domains. Then, the upper semicontinuity of these attractors when a family of \((n+1)\)-dimensional thin domains degenerates onto an n-dimensional domain as the thinness measure approaches zero is established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信