Liaqat Ali, Guang Zou, Na Li, Kashif Mehmood, Pan Fang, Adnan Khan
{"title":"通过埃尔扎基变换对时间分数七阶非线性方程进行分析处理","authors":"Liaqat Ali, Guang Zou, Na Li, Kashif Mehmood, Pan Fang, Adnan Khan","doi":"10.1007/s10665-023-10326-y","DOIUrl":null,"url":null,"abstract":"<p>In this article, we’ll show how to solve the time-fractional seventh-order Lax’s Korteweg–de Vries and Kaup–Kupershmidt equations analytically using the homotopy perturbation approach, the Adomian decomposition method, and the Elzaki transformation. The KdV equation is a general integrable equation with an inverse scattering transform-based solution that arises in a variety of physical applications, including surface water waves, internal waves in a density stratified fluid, plasma waves, Rossby waves, and magma flow. Fractional derivative is described in the Caputo sense. The solutions to fractional partial differential equation is computed using convergent series. The numerical computations and graphical representations of the analytical results obtained using the homotopy perturbation and decomposition techniques. Moreover, plots that are simple to grasp are used to compare the integer order and fractional-order solutions. After only a few iterations, we may easily obtain numerical results that provide us better approximations. The exact solutions and the derived solutions were observed to be very similar. The suggested methods have also acquired the highest level of accuracy. The most prevalent and convergent techniques for resolving nonlinear fractional-order partial differential issues are the applied techniques.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical treatments of time-fractional seventh-order nonlinear equations via Elzaki transform\",\"authors\":\"Liaqat Ali, Guang Zou, Na Li, Kashif Mehmood, Pan Fang, Adnan Khan\",\"doi\":\"10.1007/s10665-023-10326-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we’ll show how to solve the time-fractional seventh-order Lax’s Korteweg–de Vries and Kaup–Kupershmidt equations analytically using the homotopy perturbation approach, the Adomian decomposition method, and the Elzaki transformation. The KdV equation is a general integrable equation with an inverse scattering transform-based solution that arises in a variety of physical applications, including surface water waves, internal waves in a density stratified fluid, plasma waves, Rossby waves, and magma flow. Fractional derivative is described in the Caputo sense. The solutions to fractional partial differential equation is computed using convergent series. The numerical computations and graphical representations of the analytical results obtained using the homotopy perturbation and decomposition techniques. Moreover, plots that are simple to grasp are used to compare the integer order and fractional-order solutions. After only a few iterations, we may easily obtain numerical results that provide us better approximations. The exact solutions and the derived solutions were observed to be very similar. The suggested methods have also acquired the highest level of accuracy. The most prevalent and convergent techniques for resolving nonlinear fractional-order partial differential issues are the applied techniques.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10326-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10326-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical treatments of time-fractional seventh-order nonlinear equations via Elzaki transform
In this article, we’ll show how to solve the time-fractional seventh-order Lax’s Korteweg–de Vries and Kaup–Kupershmidt equations analytically using the homotopy perturbation approach, the Adomian decomposition method, and the Elzaki transformation. The KdV equation is a general integrable equation with an inverse scattering transform-based solution that arises in a variety of physical applications, including surface water waves, internal waves in a density stratified fluid, plasma waves, Rossby waves, and magma flow. Fractional derivative is described in the Caputo sense. The solutions to fractional partial differential equation is computed using convergent series. The numerical computations and graphical representations of the analytical results obtained using the homotopy perturbation and decomposition techniques. Moreover, plots that are simple to grasp are used to compare the integer order and fractional-order solutions. After only a few iterations, we may easily obtain numerical results that provide us better approximations. The exact solutions and the derived solutions were observed to be very similar. The suggested methods have also acquired the highest level of accuracy. The most prevalent and convergent techniques for resolving nonlinear fractional-order partial differential issues are the applied techniques.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.