Jaroslav Hančl, Radhakrishnan Nair, Jean-Louis Verger-Gaugry
{"title":"论素数多项式、遍历平均数和单可数群","authors":"Jaroslav Hančl, Radhakrishnan Nair, Jean-Louis Verger-Gaugry","doi":"10.1007/s00605-024-01948-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> denote a compact monothetic group, and let <span>\\(\\rho (x) = \\alpha _k x^k + \\ldots + \\alpha _1 x + \\alpha _0\\)</span>, where <span>\\(\\alpha _0, \\ldots , \\alpha _k\\)</span> are elements of <i>G</i> one of which is a generator of <i>G</i>. Let <span>\\((p_n)_{n\\ge 1}\\)</span> denote the sequence of rational prime numbers. Suppose <span>\\(f \\in L^{p}(G)\\)</span> for <span>\\(p> 1\\)</span>. It is known that if </p><span>$$\\begin{aligned} A_{N}f(x):= {1 \\over N} \\sum _{n=1}^{N} f(x + \\rho (p_n)) \\quad (N=1,2, \\ldots ), \\end{aligned}$$</span><p>then the limit <span>\\(\\lim _{n\\rightarrow \\infty } A_Nf(x)\\)</span> exists for almost all <i>x</i> with respect Haar measure. We show that if <i>G</i> is connected then the limit is <span>\\(\\int _{G} f d\\lambda \\)</span>. In the case where <i>G</i> is the <i>a</i>-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On polynomials in primes, ergodic averages and monothetic groups\",\"authors\":\"Jaroslav Hančl, Radhakrishnan Nair, Jean-Louis Verger-Gaugry\",\"doi\":\"10.1007/s00605-024-01948-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> denote a compact monothetic group, and let <span>\\\\(\\\\rho (x) = \\\\alpha _k x^k + \\\\ldots + \\\\alpha _1 x + \\\\alpha _0\\\\)</span>, where <span>\\\\(\\\\alpha _0, \\\\ldots , \\\\alpha _k\\\\)</span> are elements of <i>G</i> one of which is a generator of <i>G</i>. Let <span>\\\\((p_n)_{n\\\\ge 1}\\\\)</span> denote the sequence of rational prime numbers. Suppose <span>\\\\(f \\\\in L^{p}(G)\\\\)</span> for <span>\\\\(p> 1\\\\)</span>. It is known that if </p><span>$$\\\\begin{aligned} A_{N}f(x):= {1 \\\\over N} \\\\sum _{n=1}^{N} f(x + \\\\rho (p_n)) \\\\quad (N=1,2, \\\\ldots ), \\\\end{aligned}$$</span><p>then the limit <span>\\\\(\\\\lim _{n\\\\rightarrow \\\\infty } A_Nf(x)\\\\)</span> exists for almost all <i>x</i> with respect Haar measure. We show that if <i>G</i> is connected then the limit is <span>\\\\(\\\\int _{G} f d\\\\lambda \\\\)</span>. In the case where <i>G</i> is the <i>a</i>-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.\\n</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"211 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01948-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01948-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让G表示一个紧凑的单义群,让(\rho (x) = \alpha _k x^k + \ldots + \alpha _1 x + \alpha _0\),其中(\alpha _0,\ldots,\alpha _k\)是G的元素,其中一个是G的生成数。假设 \(f \in L^{p}(G)\) 为 \(p> 1\).已知如果 $$\begin{aligned}A_{N}f(x):= {1 over N}\sum _{n=1}^{N} f(x + \rho (p_n))\quad (N=1,2, \ldots ), \end{aligned}$$then the limit \(\lim _{n\rightarrow \infty })A_Nf(x))对于几乎所有的 x 都存在。我们证明,如果 G 是连通的,那么极限就是 (int _{G} f d\lambda \)。在 G 是 a-adic 整数的情况下,它是一个完全不相连的群,极限用傅里叶乘数来描述,而傅里叶乘数是高斯和的广义。
On polynomials in primes, ergodic averages and monothetic groups
Let G denote a compact monothetic group, and let \(\rho (x) = \alpha _k x^k + \ldots + \alpha _1 x + \alpha _0\), where \(\alpha _0, \ldots , \alpha _k\) are elements of G one of which is a generator of G. Let \((p_n)_{n\ge 1}\) denote the sequence of rational prime numbers. Suppose \(f \in L^{p}(G)\) for \(p> 1\). It is known that if
then the limit \(\lim _{n\rightarrow \infty } A_Nf(x)\) exists for almost all x with respect Haar measure. We show that if G is connected then the limit is \(\int _{G} f d\lambda \). In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.