{"title":"通过研究倾斜正矢量尺度混合物的随机阶数评估环境数据中的极端记录","authors":"Jorge M Arevalillo, Jorge Navarro","doi":"10.1007/s10651-024-00600-2","DOIUrl":null,"url":null,"abstract":"<p>Scale mixtures of skew normal distributions are flexible models well-suited to handle departures from multivariate normality. This paper is concerned with the stochastic comparison of vectors that belong to the family of scale mixtures of skew normal distributions. The paper revisits some of their properties with a proposal that allows to carry out tail weight stochastic comparisons. The connections of the proposed stochastic orders with the non-normality parameters of the multivariate model are also studied for some popular distributions within the family. The role played by these parameters to tackle the non-normality of multivariate data is enhanced as a result. This work is motivated by the analysis of multivariate data in environmental studies which usually collect maximum or minimum values exhibiting departures from normality. The implications of our theoretical results in addressing the stochastic comparison of extreme environmental records is illustrated with an application to a real data study on maximum temperatures in the Iberian Peninsula throughout the last century. The resulting findings may elucidate whether extreme temperatures are evolving for such a long period.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"10 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of extreme records in environmental data through the study of stochastic orders for scale mixtures of skew normal vectors\",\"authors\":\"Jorge M Arevalillo, Jorge Navarro\",\"doi\":\"10.1007/s10651-024-00600-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scale mixtures of skew normal distributions are flexible models well-suited to handle departures from multivariate normality. This paper is concerned with the stochastic comparison of vectors that belong to the family of scale mixtures of skew normal distributions. The paper revisits some of their properties with a proposal that allows to carry out tail weight stochastic comparisons. The connections of the proposed stochastic orders with the non-normality parameters of the multivariate model are also studied for some popular distributions within the family. The role played by these parameters to tackle the non-normality of multivariate data is enhanced as a result. This work is motivated by the analysis of multivariate data in environmental studies which usually collect maximum or minimum values exhibiting departures from normality. The implications of our theoretical results in addressing the stochastic comparison of extreme environmental records is illustrated with an application to a real data study on maximum temperatures in the Iberian Peninsula throughout the last century. The resulting findings may elucidate whether extreme temperatures are evolving for such a long period.</p>\",\"PeriodicalId\":50519,\"journal\":{\"name\":\"Environmental and Ecological Statistics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Ecological Statistics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10651-024-00600-2\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-024-00600-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of extreme records in environmental data through the study of stochastic orders for scale mixtures of skew normal vectors
Scale mixtures of skew normal distributions are flexible models well-suited to handle departures from multivariate normality. This paper is concerned with the stochastic comparison of vectors that belong to the family of scale mixtures of skew normal distributions. The paper revisits some of their properties with a proposal that allows to carry out tail weight stochastic comparisons. The connections of the proposed stochastic orders with the non-normality parameters of the multivariate model are also studied for some popular distributions within the family. The role played by these parameters to tackle the non-normality of multivariate data is enhanced as a result. This work is motivated by the analysis of multivariate data in environmental studies which usually collect maximum or minimum values exhibiting departures from normality. The implications of our theoretical results in addressing the stochastic comparison of extreme environmental records is illustrated with an application to a real data study on maximum temperatures in the Iberian Peninsula throughout the last century. The resulting findings may elucidate whether extreme temperatures are evolving for such a long period.
期刊介绍:
Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues.
Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics.
Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.