双泊松括弧和非累加表示空间

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Grigori Olshanski, Nikita Safonkin
{"title":"双泊松括弧和非累加表示空间","authors":"Grigori Olshanski,&nbsp;Nikita Safonkin","doi":"10.1007/s11005-024-01782-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Bbbk \\)</span> be an algebraically closed field of characteristic 0 and <i>A</i> be a finitely generated associative <span>\\(\\Bbbk \\)</span>-algebra, in general noncommutative. One assigns to <i>A</i> a sequence of commutative <span>\\(\\Bbbk \\)</span>-algebras <span>\\(\\mathcal {O}(A,d)\\)</span>, <span>\\(d=1,2,3,\\dots \\)</span>, where <span>\\(\\mathcal {O}(A,d)\\)</span> is the coordinate ring of the space <span>\\({\\text {Rep}}(A,d)\\)</span> of <i>d</i>-dimensional representations of the algebra <i>A</i>. A <i>double Poisson bracket</i> on <i>A</i> in the sense of Van den Bergh (Trans Am Math Soc 360:5711–5799, 2008) is a bilinear map <span>\\(\\{\\!\\{-,-\\}\\!\\}\\)</span> from <span>\\(A\\times A\\)</span> to <span>\\(A^{\\otimes 2}\\)</span>, subject to certain conditions. Van den Bergh showed that any such bracket <span>\\(\\{\\!\\{-,-\\}\\!\\}\\)</span> induces Poisson structures on all algebras <span>\\(\\mathcal {O}(A,d)\\)</span>. We propose an analog of Van den Bergh’s construction, which produces Poisson structures on the coordinate rings of certain subspaces of the representation spaces <span>\\({\\text {Rep}}(A,d)\\)</span>. We call these subspaces the <i>involutive</i> representation spaces. They arise by imposing an additional symmetry condition on <span>\\({\\text {Rep}}(A,d)\\)</span>—just as the classical groups from the series B, C, D are obtained from the general linear groups (series A) as fixed point sets of involutive automorphisms.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Poisson brackets and involutive representation spaces\",\"authors\":\"Grigori Olshanski,&nbsp;Nikita Safonkin\",\"doi\":\"10.1007/s11005-024-01782-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\Bbbk \\\\)</span> be an algebraically closed field of characteristic 0 and <i>A</i> be a finitely generated associative <span>\\\\(\\\\Bbbk \\\\)</span>-algebra, in general noncommutative. One assigns to <i>A</i> a sequence of commutative <span>\\\\(\\\\Bbbk \\\\)</span>-algebras <span>\\\\(\\\\mathcal {O}(A,d)\\\\)</span>, <span>\\\\(d=1,2,3,\\\\dots \\\\)</span>, where <span>\\\\(\\\\mathcal {O}(A,d)\\\\)</span> is the coordinate ring of the space <span>\\\\({\\\\text {Rep}}(A,d)\\\\)</span> of <i>d</i>-dimensional representations of the algebra <i>A</i>. A <i>double Poisson bracket</i> on <i>A</i> in the sense of Van den Bergh (Trans Am Math Soc 360:5711–5799, 2008) is a bilinear map <span>\\\\(\\\\{\\\\!\\\\{-,-\\\\}\\\\!\\\\}\\\\)</span> from <span>\\\\(A\\\\times A\\\\)</span> to <span>\\\\(A^{\\\\otimes 2}\\\\)</span>, subject to certain conditions. Van den Bergh showed that any such bracket <span>\\\\(\\\\{\\\\!\\\\{-,-\\\\}\\\\!\\\\}\\\\)</span> induces Poisson structures on all algebras <span>\\\\(\\\\mathcal {O}(A,d)\\\\)</span>. We propose an analog of Van den Bergh’s construction, which produces Poisson structures on the coordinate rings of certain subspaces of the representation spaces <span>\\\\({\\\\text {Rep}}(A,d)\\\\)</span>. We call these subspaces the <i>involutive</i> representation spaces. They arise by imposing an additional symmetry condition on <span>\\\\({\\\\text {Rep}}(A,d)\\\\)</span>—just as the classical groups from the series B, C, D are obtained from the general linear groups (series A) as fixed point sets of involutive automorphisms.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01782-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01782-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 让 \(\Bbbk \) 是一个特征为 0 的代数闭域,A 是一个有限生成的关联 \(\Bbbk \) -代数,一般来说是非交换的。我们给 A 赋值一系列交换的 ( ( ( (Bbbk) ) )-代数)其中 \(\mathcal {O}(A,d)\) 是代数 A 的 d 维表示的空间 \({\text {Rep}}(A,d)\) 的坐标环。在范登贝格(Trans Am Math Soc 360:5711-5799, 2008)的意义上,A 上的双泊松括号是从\(A\times A\) 到\(A^{\times 2}\) 的双线性映射(\{\!Van den Bergh 证明了任何这样的括号 ({\!\{-,-\}\!!\})都会在所有的代数(\mathcal {O}(A,d)\) )上引起泊松结构。我们提出了 Van den Bergh 构建的类似方法,即在表示空间 \({\text {Rep}}(A,d)\) 的某些子空间的坐标环上产生泊松结构。我们称这些子空间为内卷表示空间。它们是通过在 \({\text {Rep}}(A,d)\) 上施加额外的对称条件而产生的--就像从一般线性群(系列 A)中得到的经典群(系列 B、C、D)是渐开自动形的定点集一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Poisson brackets and involutive representation spaces

Let \(\Bbbk \) be an algebraically closed field of characteristic 0 and A be a finitely generated associative \(\Bbbk \)-algebra, in general noncommutative. One assigns to A a sequence of commutative \(\Bbbk \)-algebras \(\mathcal {O}(A,d)\), \(d=1,2,3,\dots \), where \(\mathcal {O}(A,d)\) is the coordinate ring of the space \({\text {Rep}}(A,d)\) of d-dimensional representations of the algebra A. A double Poisson bracket on A in the sense of Van den Bergh (Trans Am Math Soc 360:5711–5799, 2008) is a bilinear map \(\{\!\{-,-\}\!\}\) from \(A\times A\) to \(A^{\otimes 2}\), subject to certain conditions. Van den Bergh showed that any such bracket \(\{\!\{-,-\}\!\}\) induces Poisson structures on all algebras \(\mathcal {O}(A,d)\). We propose an analog of Van den Bergh’s construction, which produces Poisson structures on the coordinate rings of certain subspaces of the representation spaces \({\text {Rep}}(A,d)\). We call these subspaces the involutive representation spaces. They arise by imposing an additional symmetry condition on \({\text {Rep}}(A,d)\)—just as the classical groups from the series B, C, D are obtained from the general linear groups (series A) as fixed point sets of involutive automorphisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信