区间值数据的最小协方差行列式估计器

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Wan Tian, Zhongfeng Qin
{"title":"区间值数据的最小协方差行列式估计器","authors":"Wan Tian, Zhongfeng Qin","doi":"10.1007/s11222-024-10386-9","DOIUrl":null,"url":null,"abstract":"<p>Effective estimation of covariance matrices is crucial for statistical analyses and applications. In this paper, we focus on the robust estimation of covariance matrix for interval-valued data in low and moderately high dimensions. In the low-dimensional scenario, we extend the Minimum Covariance Determinant (MCD) estimator to interval-valued data. We derive an iterative algorithm for computing this estimator, demonstrate its convergence, and theoretically establish that it retains the high breakdown-point property of the MCD estimator. Further, we propose a projection-based estimator and a regularization-based estimator to extend the MCD estimator to moderately high-dimensional settings, respectively. We propose efficient iterative algorithms for solving these two estimators and demonstrate their convergence properties. We conduct extensive simulation studies and real data analysis to validate the finite sample properties of these proposed estimators.\n</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minimum covariance determinant estimator for interval-valued data\",\"authors\":\"Wan Tian, Zhongfeng Qin\",\"doi\":\"10.1007/s11222-024-10386-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective estimation of covariance matrices is crucial for statistical analyses and applications. In this paper, we focus on the robust estimation of covariance matrix for interval-valued data in low and moderately high dimensions. In the low-dimensional scenario, we extend the Minimum Covariance Determinant (MCD) estimator to interval-valued data. We derive an iterative algorithm for computing this estimator, demonstrate its convergence, and theoretically establish that it retains the high breakdown-point property of the MCD estimator. Further, we propose a projection-based estimator and a regularization-based estimator to extend the MCD estimator to moderately high-dimensional settings, respectively. We propose efficient iterative algorithms for solving these two estimators and demonstrate their convergence properties. We conduct extensive simulation studies and real data analysis to validate the finite sample properties of these proposed estimators.\\n</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10386-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10386-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

有效估计协方差矩阵对统计分析和应用至关重要。在本文中,我们将重点关注低维和中高维区间值数据协方差矩阵的稳健估计。在低维情况下,我们将最小协方差判定(MCD)估计器扩展到区间值数据。我们推导了计算该估计器的迭代算法,证明了它的收敛性,并从理论上确定它保留了 MCD 估计器的高分解点特性。此外,我们还提出了一种基于投影的估计器和一种基于正则化的估计器,分别将 MCD 估计器扩展到中高维环境。我们提出了求解这两种估计器的高效迭代算法,并证明了它们的收敛特性。我们进行了大量的模拟研究和实际数据分析,以验证这些估计器的有限样本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The minimum covariance determinant estimator for interval-valued data

The minimum covariance determinant estimator for interval-valued data

Effective estimation of covariance matrices is crucial for statistical analyses and applications. In this paper, we focus on the robust estimation of covariance matrix for interval-valued data in low and moderately high dimensions. In the low-dimensional scenario, we extend the Minimum Covariance Determinant (MCD) estimator to interval-valued data. We derive an iterative algorithm for computing this estimator, demonstrate its convergence, and theoretically establish that it retains the high breakdown-point property of the MCD estimator. Further, we propose a projection-based estimator and a regularization-based estimator to extend the MCD estimator to moderately high-dimensional settings, respectively. We propose efficient iterative algorithms for solving these two estimators and demonstrate their convergence properties. We conduct extensive simulation studies and real data analysis to validate the finite sample properties of these proposed estimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信