具有卡普托分数拉普拉奇和可变系数波数 $μ$ 的近似非局部赫尔姆霍兹方程的渐近谱特性和预处理

Andrea Adriani, Rosita Luisa Sormani, Cristina Tablino-Possio, Rolf Krause, Stefano Serra-Capizzano
{"title":"具有卡普托分数拉普拉奇和可变系数波数 $μ$ 的近似非局部赫尔姆霍兹方程的渐近谱特性和预处理","authors":"Andrea Adriani, Rosita Luisa Sormani, Cristina Tablino-Possio, Rolf Krause, Stefano Serra-Capizzano","doi":"arxiv-2402.10569","DOIUrl":null,"url":null,"abstract":"The current study investigates the asymptotic spectral properties of a finite\ndifference approximation of nonlocal Helmholtz equations with a Caputo\nfractional Laplacian and a variable coefficient wave number $\\mu$, as it occurs\nwhen considering a wave propagation in complex media, characterized by nonlocal\ninteractions and spatially varying wave speeds. More specifically, by using\ntools from Toeplitz and generalized locally Toeplitz theory, the present\nresearch delves into the spectral analysis of nonpreconditioned and\npreconditioned matrix-sequences. We report numerical evidences supporting the\ntheoretical findings. Finally, open problems and potential extensions in\nvarious directions are presented and briefly discussed.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"300 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic spectral properties and preconditioning of an approximated nonlocal Helmholtz equation with Caputo fractional Laplacian and variable coefficient wave number $μ$\",\"authors\":\"Andrea Adriani, Rosita Luisa Sormani, Cristina Tablino-Possio, Rolf Krause, Stefano Serra-Capizzano\",\"doi\":\"arxiv-2402.10569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study investigates the asymptotic spectral properties of a finite\\ndifference approximation of nonlocal Helmholtz equations with a Caputo\\nfractional Laplacian and a variable coefficient wave number $\\\\mu$, as it occurs\\nwhen considering a wave propagation in complex media, characterized by nonlocal\\ninteractions and spatially varying wave speeds. More specifically, by using\\ntools from Toeplitz and generalized locally Toeplitz theory, the present\\nresearch delves into the spectral analysis of nonpreconditioned and\\npreconditioned matrix-sequences. We report numerical evidences supporting the\\ntheoretical findings. Finally, open problems and potential extensions in\\nvarious directions are presented and briefly discussed.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"300 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.10569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了具有 Caputofractional Laplacian 和可变系数波数 $\mu$ 的非局部亥姆霍兹方程的有限差分近似的渐近谱特性,因为当考虑波在复杂介质中传播时会出现这种特性,其特征是非局部相互作用和空间变化的波速。更具体地说,通过使用托普利兹理论和广义局部托普利兹理论的工具,本研究深入研究了非预调矩阵序列和预调矩阵序列的谱分析。我们报告了支持理论发现的数值证据。最后,我们提出并简要讨论了有待解决的问题以及在不同方向上的潜在扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic spectral properties and preconditioning of an approximated nonlocal Helmholtz equation with Caputo fractional Laplacian and variable coefficient wave number $μ$
The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信