Mikael Eriksson, Miklós Lipcsey, Yann Ilboudo, Satoshi Yoshiji, Brent Richards, Michael Hultström
{"title":"脓毒症和重症肺炎中的 Uromodulin - 一项双样本孟德尔随机研究。","authors":"Mikael Eriksson, Miklós Lipcsey, Yann Ilboudo, Satoshi Yoshiji, Brent Richards, Michael Hultström","doi":"10.1152/physiolgenomics.00145.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The outcome for patients with sepsis-associated acute kidney injury in the intensive care unit (ICU) remains poor. Low serum uromodulin (sUMOD) protein levels have been proposed as a causal mediator of this effect. We investigated the effect of different levels of sUMOD on the risk of sepsis and severe pneumonia and outcomes in these conditions. A two-sample Mendelian randomization (MR) study was performed. Single-nucleotide polymorphisms (SNPs) associated with increased levels of sUMOD were identified and used as instrumental variables for association with outcomes. Data from different cohorts were combined based on disease severity and meta-analyzed. Five SNPs associated with increased sUMOD levels were identified and tested in six datasets from two biobanks. There was no protective effect of increased levels of sUMOD on the risk of sepsis [two cohorts, odds ratio (OR) 0.99 (95% confidence interval 0.95-1.03), <i>P</i> = 0.698, and OR 0.95 (0.91-1.00), <i>P</i> = 0.060, respectively], risk of sepsis requiring ICU admission [OR 1.04 (0.93-1.16), <i>P</i> = 0.467], ICU mortality in sepsis [OR 1.00 (0.74-1.37), <i>P</i> = 0.987], risk of pneumonia requiring ICU admission [OR 1.05 (0.98-1.14), <i>P</i> = 0.181], or ICU mortality in pneumonia [OR 1.17 (0.98-1.39), <i>P</i> = 0.079]. Meta-analysis of hospital-admitted and ICU-admitted patients separately yielded similar results [OR 0.98 (0.95-1.01), <i>P</i> = 0.23, and OR 1.05 (0.99-1.12), <i>P</i> = 0.86, respectively]. Among patients with sepsis and severe pneumonia, there was no protective effect of different levels of sUMOD. Results were consistent regardless of geographic origins and not modified by disease severity. <b>NEW & NOTEWORTHY</b> The presence of acute kidney injury in severe infections increases the likelihood of poor outcome severalfold. A decrease in serum uromodulin (sUMOD), synthetized in the kidney, has been proposed as a mediator of this effect. Using the Mendelian randomization technique, we tested the hypothesis that increased sUMOD is protective in severe infections. Analyses, however, showed no evidence of a protective effect of higher levels of sUMOD in sepsis or severe pneumonia.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uromodulin in sepsis and severe pneumonia: a two-sample Mendelian randomization study.\",\"authors\":\"Mikael Eriksson, Miklós Lipcsey, Yann Ilboudo, Satoshi Yoshiji, Brent Richards, Michael Hultström\",\"doi\":\"10.1152/physiolgenomics.00145.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The outcome for patients with sepsis-associated acute kidney injury in the intensive care unit (ICU) remains poor. Low serum uromodulin (sUMOD) protein levels have been proposed as a causal mediator of this effect. We investigated the effect of different levels of sUMOD on the risk of sepsis and severe pneumonia and outcomes in these conditions. A two-sample Mendelian randomization (MR) study was performed. Single-nucleotide polymorphisms (SNPs) associated with increased levels of sUMOD were identified and used as instrumental variables for association with outcomes. Data from different cohorts were combined based on disease severity and meta-analyzed. Five SNPs associated with increased sUMOD levels were identified and tested in six datasets from two biobanks. There was no protective effect of increased levels of sUMOD on the risk of sepsis [two cohorts, odds ratio (OR) 0.99 (95% confidence interval 0.95-1.03), <i>P</i> = 0.698, and OR 0.95 (0.91-1.00), <i>P</i> = 0.060, respectively], risk of sepsis requiring ICU admission [OR 1.04 (0.93-1.16), <i>P</i> = 0.467], ICU mortality in sepsis [OR 1.00 (0.74-1.37), <i>P</i> = 0.987], risk of pneumonia requiring ICU admission [OR 1.05 (0.98-1.14), <i>P</i> = 0.181], or ICU mortality in pneumonia [OR 1.17 (0.98-1.39), <i>P</i> = 0.079]. Meta-analysis of hospital-admitted and ICU-admitted patients separately yielded similar results [OR 0.98 (0.95-1.01), <i>P</i> = 0.23, and OR 1.05 (0.99-1.12), <i>P</i> = 0.86, respectively]. Among patients with sepsis and severe pneumonia, there was no protective effect of different levels of sUMOD. Results were consistent regardless of geographic origins and not modified by disease severity. <b>NEW & NOTEWORTHY</b> The presence of acute kidney injury in severe infections increases the likelihood of poor outcome severalfold. A decrease in serum uromodulin (sUMOD), synthetized in the kidney, has been proposed as a mediator of this effect. Using the Mendelian randomization technique, we tested the hypothesis that increased sUMOD is protective in severe infections. Analyses, however, showed no evidence of a protective effect of higher levels of sUMOD in sepsis or severe pneumonia.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00145.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00145.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
重症监护室(ICU)中脓毒症相关急性肾损伤(AKI)患者的预后仍然很差。低血清尿泌素(sUMOD)蛋白水平被认为是造成这种影响的原因之一。我们研究了不同水平的 sUMOD 对脓毒症和重症肺炎风险的影响以及在这些情况下的预后。我们进行了一项双样本孟德尔随机化(MR)研究。研究人员确定了与 sUMOD 水平升高相关的单核苷酸多态性 (SNP),并将其作为与预后相关的工具变量。根据疾病严重程度合并不同队列的数据并进行荟萃分析。在来自两个生物库的六个数据集中,确定并测试了与 sUMOD 水平升高相关的五个 SNPs。sUMOD水平升高对脓毒症风险(两个队列,OR 0.99 ( 95 % CI 0.95-1.03), p = 0.698 和 OR 0.95 (0.91-1.00), p = 0.060)、需要入住ICU的脓毒症风险(OR 1.04(0.93-1.16),p = 0.467)、脓毒症的 ICU 死亡率(OR 1.00(0.74-1.37),p = 0.987)、肺炎需要入住 ICU 的风险(OR 1.05(0.98-1.14),p = 0.181)或肺炎的 ICU 死亡率(OR 1.17(0.98-1.39),p = 0.079)。对入院患者和入住重症监护室患者分别进行的 Meta 分析结果相似(OR 分别为 0.98 (0.95-1.01),p = 0.23 和 OR 1.05 (0.99-1.12),p = 0.86)。在败血症和重症肺炎患者中,不同水平的 sUMOD 没有保护作用。无论患者来自何地,结果都是一致的,且不因疾病严重程度而改变。
Uromodulin in sepsis and severe pneumonia: a two-sample Mendelian randomization study.
The outcome for patients with sepsis-associated acute kidney injury in the intensive care unit (ICU) remains poor. Low serum uromodulin (sUMOD) protein levels have been proposed as a causal mediator of this effect. We investigated the effect of different levels of sUMOD on the risk of sepsis and severe pneumonia and outcomes in these conditions. A two-sample Mendelian randomization (MR) study was performed. Single-nucleotide polymorphisms (SNPs) associated with increased levels of sUMOD were identified and used as instrumental variables for association with outcomes. Data from different cohorts were combined based on disease severity and meta-analyzed. Five SNPs associated with increased sUMOD levels were identified and tested in six datasets from two biobanks. There was no protective effect of increased levels of sUMOD on the risk of sepsis [two cohorts, odds ratio (OR) 0.99 (95% confidence interval 0.95-1.03), P = 0.698, and OR 0.95 (0.91-1.00), P = 0.060, respectively], risk of sepsis requiring ICU admission [OR 1.04 (0.93-1.16), P = 0.467], ICU mortality in sepsis [OR 1.00 (0.74-1.37), P = 0.987], risk of pneumonia requiring ICU admission [OR 1.05 (0.98-1.14), P = 0.181], or ICU mortality in pneumonia [OR 1.17 (0.98-1.39), P = 0.079]. Meta-analysis of hospital-admitted and ICU-admitted patients separately yielded similar results [OR 0.98 (0.95-1.01), P = 0.23, and OR 1.05 (0.99-1.12), P = 0.86, respectively]. Among patients with sepsis and severe pneumonia, there was no protective effect of different levels of sUMOD. Results were consistent regardless of geographic origins and not modified by disease severity. NEW & NOTEWORTHY The presence of acute kidney injury in severe infections increases the likelihood of poor outcome severalfold. A decrease in serum uromodulin (sUMOD), synthetized in the kidney, has been proposed as a mediator of this effect. Using the Mendelian randomization technique, we tested the hypothesis that increased sUMOD is protective in severe infections. Analyses, however, showed no evidence of a protective effect of higher levels of sUMOD in sepsis or severe pneumonia.