{"title":"人工神经网络、循环神经网络和长短期记忆在预测极端气候变化方面的性能比较","authors":"Nanda Try Luchia, Ena Tasia, Indah Ramadhani, Akhas Rahmadeyan, Raudiatul Zahra","doi":"10.57152/predatecs.v1i2.864","DOIUrl":null,"url":null,"abstract":"Extreme climate change is the most common problem in Indonesia. Extreme climate change for months can cause various natural disasters. Therefore, it is necessary to make predictions about climate change that will occur in order to avoid the risk of future conflicts. This study uses the Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) algorithms by comparing the performance of the three using Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) evaluations. The results of this study indicate that RNN is better at predicting temperature in Indonesia compared to ANN and LSTM. This is evidenced by the MAPE value generated by the RNN which is smaller than the ANN and LSTM, which is 1.852 %, the RMSE value is 1,870, and the MSE value is 3,497.","PeriodicalId":516904,"journal":{"name":"Public Research Journal of Engineering, Data Technology and Computer Science","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change\",\"authors\":\"Nanda Try Luchia, Ena Tasia, Indah Ramadhani, Akhas Rahmadeyan, Raudiatul Zahra\",\"doi\":\"10.57152/predatecs.v1i2.864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme climate change is the most common problem in Indonesia. Extreme climate change for months can cause various natural disasters. Therefore, it is necessary to make predictions about climate change that will occur in order to avoid the risk of future conflicts. This study uses the Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) algorithms by comparing the performance of the three using Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) evaluations. The results of this study indicate that RNN is better at predicting temperature in Indonesia compared to ANN and LSTM. This is evidenced by the MAPE value generated by the RNN which is smaller than the ANN and LSTM, which is 1.852 %, the RMSE value is 1,870, and the MSE value is 3,497.\",\"PeriodicalId\":516904,\"journal\":{\"name\":\"Public Research Journal of Engineering, Data Technology and Computer Science\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Public Research Journal of Engineering, Data Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/predatecs.v1i2.864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Research Journal of Engineering, Data Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/predatecs.v1i2.864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change
Extreme climate change is the most common problem in Indonesia. Extreme climate change for months can cause various natural disasters. Therefore, it is necessary to make predictions about climate change that will occur in order to avoid the risk of future conflicts. This study uses the Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) algorithms by comparing the performance of the three using Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) evaluations. The results of this study indicate that RNN is better at predicting temperature in Indonesia compared to ANN and LSTM. This is evidenced by the MAPE value generated by the RNN which is smaller than the ANN and LSTM, which is 1.852 %, the RMSE value is 1,870, and the MSE value is 3,497.