使用监督学习算法对《古兰经》译文进行文本分类

Dhea Ananda, Syahida Nurhidayarnis, Tiara Afrah Afifah, Muhammad Anang Ramadhan, Ilvan Mahendra
{"title":"使用监督学习算法对《古兰经》译文进行文本分类","authors":"Dhea Ananda, Syahida Nurhidayarnis, Tiara Afrah Afifah, Muhammad Anang Ramadhan, Ilvan Mahendra","doi":"10.57152/predatecs.v1i2.870","DOIUrl":null,"url":null,"abstract":"The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.","PeriodicalId":516904,"journal":{"name":"Public Research Journal of Engineering, Data Technology and Computer Science","volume":"20 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Classification of Translated Qur'anic Verses Using Supervised Learning Algorithm\",\"authors\":\"Dhea Ananda, Syahida Nurhidayarnis, Tiara Afrah Afifah, Muhammad Anang Ramadhan, Ilvan Mahendra\",\"doi\":\"10.57152/predatecs.v1i2.870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.\",\"PeriodicalId\":516904,\"journal\":{\"name\":\"Public Research Journal of Engineering, Data Technology and Computer Science\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Public Research Journal of Engineering, Data Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/predatecs.v1i2.870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Research Journal of Engineering, Data Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/predatecs.v1i2.870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

古兰经》由真主的绝对神谕组成,具有指导作用。虽然阅读《古兰经》的塔夫西尔(tafsir)证明是有益的,但它可能无法全面理解《古兰经》传达的全部信息。这是因为《古兰经》在每个经节中都涉及不同的主题,读者必须参考整个章节中相互关联的经文,才能获得全面的解释。然而,由于经文内容广泛且多种多样,为每段经文获取准确的译文可能是一项复杂而耗时的工作。因此,当务之急是利用模糊 C-Means、随机森林和支持向量机,根据《古兰经》经文的主要内容将其翻译文本分为不同的类别。考虑到所获得的戴维斯-博尔丁指数(DBI)值,分析表明第 9 组是对《古兰经》An-Nisa 数据进行分类的最佳组群,其 DBI 值最低,为 4.30。值得注意的是,与 SVM 算法相比,随机森林算法的准确率更高,达到了 66.37%,而 SVM 算法的准确率为 50.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Classification of Translated Qur'anic Verses Using Supervised Learning Algorithm
The Quran, comprising Allah's absolute divine messages, serves as guidance. Although reading the Quran with tafsir proves beneficial, it may not offer a comprehensive understanding of the entire message conveyed by the Al-Quran. This is due to the Quran addressing diverse topics within each surah, necessitating readers to reference interconnected verses throughout the entire chapter for a holistic interpretation. However, given the extensive and varied verses, obtaining accurate translations for each verse can be a complex and time-consuming endeavor. Therefore, it becomes imperative to categorize the translated text of Quranic verses into distinct classes based on their primary content, utilizing Fuzzy C-Means, Random Forest, and Support Vector Machine. The analysis, considering the obtained Davies-Bouldin Index (DBI) value, reveals that cluster 9 emerges as the optimal cluster for classifying QS An-Nisa data, exhibiting the lowest DBI value of 4.30. Notably, the Random Forest algorithm demonstrates higher accuracy compared to the SVM algorithm, achieving an accuracy rate of 66.37%, while the SVM algorithm attains an accuracy of 50.56%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信