{"title":"实施关联规则算法识别订单中的热门顶部组合","authors":"Rizki Aulia Putra, Margareta Amalia Miranti Putri, Sri Maharani Sinaga, Sania Fitri Octavia, Raihan Catur Rachman","doi":"10.57152/predatecs.v1i2.863","DOIUrl":null,"url":null,"abstract":"Association rule is a data mining technique to find associative rules between a combination of items. This research aims to apply association rules algorithm in identifying popular topping combinations in food orders. This application aims to help restaurant owners or food businesses understand their customers' preferences and optimize their menu offerings. Data obtained from kaggle, the association rules algorithm is applied to this dataset to identify patterns or combinations of toppings that often appear together in orders. The results of this study show toppings with chocolate as a popular item in orders. These findings can provide valuable insights for food business owners in structuring their menus and determining attractive offers for customers. This study also applied a comparison between the apriori, fp- growth and eclat algorithms, with the result that the best item transaction rule was found: a combination of dill & unicorn toppings with chocolate with 60% confidence. Overall, the application of eclat algorithm in this study provides the best performance with higher execution speed, thus providing insight into customer preferences regarding topping combinations in food orders. Despite the shortcomings of the data form from this study, it is expected to help business owners in optimizing their offerings, increasing customer satisfaction, and improving their business performance.","PeriodicalId":516904,"journal":{"name":"Public Research Journal of Engineering, Data Technology and Computer Science","volume":"113 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Association Rules Algorithm to Identify Popular Topping Combinations in Orders\",\"authors\":\"Rizki Aulia Putra, Margareta Amalia Miranti Putri, Sri Maharani Sinaga, Sania Fitri Octavia, Raihan Catur Rachman\",\"doi\":\"10.57152/predatecs.v1i2.863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rule is a data mining technique to find associative rules between a combination of items. This research aims to apply association rules algorithm in identifying popular topping combinations in food orders. This application aims to help restaurant owners or food businesses understand their customers' preferences and optimize their menu offerings. Data obtained from kaggle, the association rules algorithm is applied to this dataset to identify patterns or combinations of toppings that often appear together in orders. The results of this study show toppings with chocolate as a popular item in orders. These findings can provide valuable insights for food business owners in structuring their menus and determining attractive offers for customers. This study also applied a comparison between the apriori, fp- growth and eclat algorithms, with the result that the best item transaction rule was found: a combination of dill & unicorn toppings with chocolate with 60% confidence. Overall, the application of eclat algorithm in this study provides the best performance with higher execution speed, thus providing insight into customer preferences regarding topping combinations in food orders. Despite the shortcomings of the data form from this study, it is expected to help business owners in optimizing their offerings, increasing customer satisfaction, and improving their business performance.\",\"PeriodicalId\":516904,\"journal\":{\"name\":\"Public Research Journal of Engineering, Data Technology and Computer Science\",\"volume\":\"113 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Public Research Journal of Engineering, Data Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/predatecs.v1i2.863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Research Journal of Engineering, Data Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/predatecs.v1i2.863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Association Rules Algorithm to Identify Popular Topping Combinations in Orders
Association rule is a data mining technique to find associative rules between a combination of items. This research aims to apply association rules algorithm in identifying popular topping combinations in food orders. This application aims to help restaurant owners or food businesses understand their customers' preferences and optimize their menu offerings. Data obtained from kaggle, the association rules algorithm is applied to this dataset to identify patterns or combinations of toppings that often appear together in orders. The results of this study show toppings with chocolate as a popular item in orders. These findings can provide valuable insights for food business owners in structuring their menus and determining attractive offers for customers. This study also applied a comparison between the apriori, fp- growth and eclat algorithms, with the result that the best item transaction rule was found: a combination of dill & unicorn toppings with chocolate with 60% confidence. Overall, the application of eclat algorithm in this study provides the best performance with higher execution speed, thus providing insight into customer preferences regarding topping combinations in food orders. Despite the shortcomings of the data form from this study, it is expected to help business owners in optimizing their offerings, increasing customer satisfaction, and improving their business performance.