{"title":"低维 2 阶可解谎言代数的精确交映结构","authors":"E. Kurniadi, K. Parmikanti, Badrulfalah","doi":"10.33541/edumatsains.v8i2.5319","DOIUrl":null,"url":null,"abstract":"In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called a 2-step solvable Frobenius Lie algebra.","PeriodicalId":517027,"journal":{"name":"EduMatSains : Jurnal Pendidikan, Matematika dan Sains","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EXACT SYMPLECTIC STRUCTURE OF LOW DIMENSIONAL 2-STEP SOLVABLE LIE ALGEBRAS\",\"authors\":\"E. Kurniadi, K. Parmikanti, Badrulfalah\",\"doi\":\"10.33541/edumatsains.v8i2.5319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called a 2-step solvable Frobenius Lie algebra.\",\"PeriodicalId\":517027,\"journal\":{\"name\":\"EduMatSains : Jurnal Pendidikan, Matematika dan Sains\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EduMatSains : Jurnal Pendidikan, Matematika dan Sains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33541/edumatsains.v8i2.5319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EduMatSains : Jurnal Pendidikan, Matematika dan Sains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33541/edumatsains.v8i2.5319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AN EXACT SYMPLECTIC STRUCTURE OF LOW DIMENSIONAL 2-STEP SOLVABLE LIE ALGEBRAS
In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called a 2-step solvable Frobenius Lie algebra.