低维 2 阶可解谎言代数的精确交映结构

E. Kurniadi, K. Parmikanti, Badrulfalah
{"title":"低维 2 阶可解谎言代数的精确交映结构","authors":"E. Kurniadi, K. Parmikanti, Badrulfalah","doi":"10.33541/edumatsains.v8i2.5319","DOIUrl":null,"url":null,"abstract":"In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called  a 2-step solvable Frobenius Lie algebra.","PeriodicalId":517027,"journal":{"name":"EduMatSains : Jurnal Pendidikan, Matematika dan Sains","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EXACT SYMPLECTIC STRUCTURE OF LOW DIMENSIONAL 2-STEP SOLVABLE LIE ALGEBRAS\",\"authors\":\"E. Kurniadi, K. Parmikanti, Badrulfalah\",\"doi\":\"10.33541/edumatsains.v8i2.5319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called  a 2-step solvable Frobenius Lie algebra.\",\"PeriodicalId\":517027,\"journal\":{\"name\":\"EduMatSains : Jurnal Pendidikan, Matematika dan Sains\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EduMatSains : Jurnal Pendidikan, Matematika dan Sains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33541/edumatsains.v8i2.5319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EduMatSains : Jurnal Pendidikan, Matematika dan Sains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33541/edumatsains.v8i2.5319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个具有精确交映结构的李代数。这一条件意味着该列代数具有偶数维。研究的目的是识别和构造低维度的两步可解精确交映型列代数,并为它们的一元形式和交映形式提供明确的公式。在四维的情况下,我们发现三类中只有一类是两步可解的精确交映李代数。此外,我们还给出了更多六维度和八维度具有精确交映形式的李代数的例子,其中包括两步可解精确交映李代数。此外,众所周知,具有精确交映形式的两步可解李代数并不存在,但它被称为两步可解弗罗本尼乌斯李代数(2-step solvable Frobenius Lie algebra)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN EXACT SYMPLECTIC STRUCTURE OF LOW DIMENSIONAL 2-STEP SOLVABLE LIE ALGEBRAS
In this paper, we study a Lie algebra equipped by an exact symplectic structure. This condition implies that the Lie algebra has even dimension. The research aims to identify and to contruct 2-step solvable exact symplectic Lie algebras of low dimension with explicit formulas for their one-forms and symplectic forms. For case of four-dimensional, we found that only one class among three classes is 2-step solvable exact symplectic Lie algebra. Furthermore, we also give more examples for case six and eight dimensional of Lie algebras with exact symplectic forms which is included 2-step solvable exact sympletic Lie algebras. Moreover, it is well known that a 2-step solvable Lie algebra equipped by an exact symplectic form is nothing but it is called  a 2-step solvable Frobenius Lie algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信