跨领域迁移学习对人工智能性能的影响

Md.mafiqul Islam
{"title":"跨领域迁移学习对人工智能性能的影响","authors":"Md.mafiqul Islam","doi":"10.60087/jaigs.v1i1.37","DOIUrl":null,"url":null,"abstract":"This study investigates the profound impact of transfer learning on the performance of artificial intelligence (AI) models when applied across diverse domains. Transfer learning, a machine learning technique that leverages knowledge gained from one task to improve performance on a related task, has demonstrated remarkable success in various applications. The article explores the underlying principles of transfer learning, its mechanisms, and the ways in which it enhances AI performance. The findings highlight the potential of transfer learning to facilitate knowledge transfer between domains, reduce training data requirements, and accelerate model convergence, ultimately contributing to the broader adaptability and efficiency of AI systems","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"32 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Transfer Learning on AI Performance Across Domains\",\"authors\":\"Md.mafiqul Islam\",\"doi\":\"10.60087/jaigs.v1i1.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the profound impact of transfer learning on the performance of artificial intelligence (AI) models when applied across diverse domains. Transfer learning, a machine learning technique that leverages knowledge gained from one task to improve performance on a related task, has demonstrated remarkable success in various applications. The article explores the underlying principles of transfer learning, its mechanisms, and the ways in which it enhances AI performance. The findings highlight the potential of transfer learning to facilitate knowledge transfer between domains, reduce training data requirements, and accelerate model convergence, ultimately contributing to the broader adaptability and efficiency of AI systems\",\"PeriodicalId\":517201,\"journal\":{\"name\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60087/jaigs.v1i1.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v1i1.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了迁移学习在应用于不同领域时对人工智能(AI)模型性能的深远影响。迁移学习是一种机器学习技术,它利用从一项任务中获得的知识来提高相关任务的性能。本文探讨了迁移学习的基本原理、机制以及提高人工智能性能的方法。研究结果强调了迁移学习在促进领域间知识转移、降低训练数据要求和加速模型收敛方面的潜力,最终有助于提高人工智能系统的适应性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Transfer Learning on AI Performance Across Domains
This study investigates the profound impact of transfer learning on the performance of artificial intelligence (AI) models when applied across diverse domains. Transfer learning, a machine learning technique that leverages knowledge gained from one task to improve performance on a related task, has demonstrated remarkable success in various applications. The article explores the underlying principles of transfer learning, its mechanisms, and the ways in which it enhances AI performance. The findings highlight the potential of transfer learning to facilitate knowledge transfer between domains, reduce training data requirements, and accelerate model convergence, ultimately contributing to the broader adaptability and efficiency of AI systems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信