在心脏显像核磁共振成像中分割左心室的新型深度学习方法

Wenhui Chu, Aobo Jin, Hardik A. Gohel
{"title":"在心脏显像核磁共振成像中分割左心室的新型深度学习方法","authors":"Wenhui Chu, Aobo Jin, Hardik A. Gohel","doi":"10.1109/ICAIC60265.2024.10433830","DOIUrl":null,"url":null,"abstract":"This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.","PeriodicalId":517265,"journal":{"name":"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)","volume":"1 5-6","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Deep Learning Method for Segmenting the Left Ventricle in Cardiac Cine MRI\",\"authors\":\"Wenhui Chu, Aobo Jin, Hardik A. Gohel\",\"doi\":\"10.1109/ICAIC60265.2024.10433830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.\",\"PeriodicalId\":517265,\"journal\":{\"name\":\"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)\",\"volume\":\"1 5-6\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIC60265.2024.10433830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIC60265.2024.10433830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种新型深度学习网络--GBU-Net,该网络利用分组批处理归一化 U-Net 框架,专门用于短轴电影核磁共振成像扫描中左心室的精确语义分割。该方法包括一个用于特征提取的下采样路径和一个用于细节还原的上采样路径,并针对医学成像进行了改进。主要修改包括在心脏磁共振成像分割中至关重要的更好地理解上下文的技术。数据集包括来自 45 名患者的 805 张左心室 MRI 扫描图像,并使用骰子系数和平均垂直距离等既定指标进行了比较分析。GBU-Net 大大提高了电影核磁共振扫描中左心室分割的准确性。其创新设计在测试中优于现有方法,超越了骰子系数和平均垂直距离等标准指标。这种方法的独特之处在于它能捕捉上下文信息,而传统的基于 CNN 的分割方法往往会忽略这些信息。在 SunnyBrook 测试数据集上,GBU-Net 的集合获得了 97% 的骰子得分。GBU-Net 为外科手术机器人和医学分析提供了更高的左心室分割精度和上下文理解能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Deep Learning Method for Segmenting the Left Ventricle in Cardiac Cine MRI
This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信