海洋可持续能源系统分析新方法

Yingguang Wang
{"title":"海洋可持续能源系统分析新方法","authors":"Yingguang Wang","doi":"10.1680/jensu.22.00070","DOIUrl":null,"url":null,"abstract":"This paper proposes to utilize a new adaptive KDE (Kernel Density Estimation) methodology based on linear diffusion processes for predicting the probability distribution tails of sea state parameters. A key conclusion has been reached that the proposed new methodology can lead to more accurate prediction results than the traditional methods based on the fittings to a measured significant wave height data set at NDBC (National Data Buoy Center) station 46014. This proposed methodology has subsequently been utilized for deriving an accurate 50-year environmental contour line that was used in the dynamic analysis of a two-body point absorber wave energy converter. After systematically analyzing the calculation results, another key conclusion has been drawn that it is advantageous to use a more reliable contour line derived using the proposed new methodology for long-term dynamic analysis of wave energy converters. In summary, the proposed new adaptive KDE methodology is recommended to be utilized and to be continuously refined in future research work in the field of long-term reliability analysis of marine sustainable energy systems.","PeriodicalId":516918,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Engineering Sustainability","volume":"113 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for analysis of marine sustainable energy systems\",\"authors\":\"Yingguang Wang\",\"doi\":\"10.1680/jensu.22.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to utilize a new adaptive KDE (Kernel Density Estimation) methodology based on linear diffusion processes for predicting the probability distribution tails of sea state parameters. A key conclusion has been reached that the proposed new methodology can lead to more accurate prediction results than the traditional methods based on the fittings to a measured significant wave height data set at NDBC (National Data Buoy Center) station 46014. This proposed methodology has subsequently been utilized for deriving an accurate 50-year environmental contour line that was used in the dynamic analysis of a two-body point absorber wave energy converter. After systematically analyzing the calculation results, another key conclusion has been drawn that it is advantageous to use a more reliable contour line derived using the proposed new methodology for long-term dynamic analysis of wave energy converters. In summary, the proposed new adaptive KDE methodology is recommended to be utilized and to be continuously refined in future research work in the field of long-term reliability analysis of marine sustainable energy systems.\",\"PeriodicalId\":516918,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers - Engineering Sustainability\",\"volume\":\"113 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers - Engineering Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jensu.22.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Engineering Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jensu.22.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出利用一种基于线性扩散过程的新的自适应 KDE(核密度估计)方法来预测海况参数的概率分布尾部。研究得出的一个重要结论是,与传统方法相比,基于 NDBC(国家数据浮标中心)46014 站测量的显著波高数据集的匹配,所提出的新方法可以得出更准确的预测结果。随后,该方法被用于推导精确的 50 年环境等值线,并被用于双体点吸收波能转换器的动态分析。在对计算结果进行系统分析后,得出的另一个重要结论是,在对波浪能转换器进行长期动态分析时,采用所提出的新方法得出的等值线更为可靠。总之,建议在海洋可持续能源系统长期可靠性分析领域的未来研究工作中使用并不断完善所提出的自适应 KDE 新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for analysis of marine sustainable energy systems
This paper proposes to utilize a new adaptive KDE (Kernel Density Estimation) methodology based on linear diffusion processes for predicting the probability distribution tails of sea state parameters. A key conclusion has been reached that the proposed new methodology can lead to more accurate prediction results than the traditional methods based on the fittings to a measured significant wave height data set at NDBC (National Data Buoy Center) station 46014. This proposed methodology has subsequently been utilized for deriving an accurate 50-year environmental contour line that was used in the dynamic analysis of a two-body point absorber wave energy converter. After systematically analyzing the calculation results, another key conclusion has been drawn that it is advantageous to use a more reliable contour line derived using the proposed new methodology for long-term dynamic analysis of wave energy converters. In summary, the proposed new adaptive KDE methodology is recommended to be utilized and to be continuously refined in future research work in the field of long-term reliability analysis of marine sustainable energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信