基于统计意义的与持续时间无关的鲁棒噪声扬声器验证

Asmita Nirmal, Deepak Jayaswal, P. Kachare
{"title":"基于统计意义的与持续时间无关的鲁棒噪声扬声器验证","authors":"Asmita Nirmal, Deepak Jayaswal, P. Kachare","doi":"10.33889/ijmems.2024.9.1.008","DOIUrl":null,"url":null,"abstract":"A speaker verification system models individual speakers using different speech features to improve their robustness. However, redundant features degrade the system's performance. This paper presents Statistically Significant Duration-Independent Mel frequency Cepstral Coefficients (SSDI-MFCC) features with the Extreme Gradient Boost classifier for improving the noise-robustness of speaker models. Eight statistical descriptors are used to generate signal duration-independent features, and a statistically significant feature subset is obtained using a t-test. A redeveloped Librispeech database by adding noises from the AURORA database to simulate real-world test conditions for speaker verification is used for evaluation. The SSDI-MFCC is compared with Principal Component Analysis (PCA) and Genetic Algorithm (GA). The comparative results showed average equal error rate improvements by 4.93 % and 3.48 % with the SSDI-MFCC than GA-MFCC and PCA-MFCC in clean and noisy conditions, respectively. A significant reduction in verification time is observed using SSDI-MFCC than the complete feature set.","PeriodicalId":517298,"journal":{"name":"International Journal of Mathematical, Engineering and Management Sciences","volume":"74 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistically Significant Duration-Independent-based Noise-Robust Speaker Verification\",\"authors\":\"Asmita Nirmal, Deepak Jayaswal, P. Kachare\",\"doi\":\"10.33889/ijmems.2024.9.1.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A speaker verification system models individual speakers using different speech features to improve their robustness. However, redundant features degrade the system's performance. This paper presents Statistically Significant Duration-Independent Mel frequency Cepstral Coefficients (SSDI-MFCC) features with the Extreme Gradient Boost classifier for improving the noise-robustness of speaker models. Eight statistical descriptors are used to generate signal duration-independent features, and a statistically significant feature subset is obtained using a t-test. A redeveloped Librispeech database by adding noises from the AURORA database to simulate real-world test conditions for speaker verification is used for evaluation. The SSDI-MFCC is compared with Principal Component Analysis (PCA) and Genetic Algorithm (GA). The comparative results showed average equal error rate improvements by 4.93 % and 3.48 % with the SSDI-MFCC than GA-MFCC and PCA-MFCC in clean and noisy conditions, respectively. A significant reduction in verification time is observed using SSDI-MFCC than the complete feature set.\",\"PeriodicalId\":517298,\"journal\":{\"name\":\"International Journal of Mathematical, Engineering and Management Sciences\",\"volume\":\"74 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical, Engineering and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33889/ijmems.2024.9.1.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical, Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2024.9.1.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扬声器验证系统使用不同的语音特征对单个扬声器进行建模,以提高其鲁棒性。然而,冗余特征会降低系统的性能。本文提出了统计意义上与持续时间无关的梅尔频率倒频谱系数(SSDI-MFCC)特征和极梯度提升分类器,以提高说话人模型的噪声稳健性。八种统计描述符用于生成与信号持续时间无关的特征,并通过 t 检验获得具有统计意义的特征子集。评估中使用了重新开发的 Librispeech 数据库,其中添加了 AURORA 数据库中的噪声,以模拟真实世界的测试条件,用于验证说话者。SSDI-MFCC 与主成分分析法(PCA)和遗传算法(GA)进行了比较。比较结果表明,在干净和有噪声的条件下,SSDI-MFCC 比 GA-MFCC 和 PCA-MFCC 的平均相等错误率分别提高了 4.93 % 和 3.48 %。与完整的特征集相比,使用 SSDI-MFCC 的验证时间大大缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistically Significant Duration-Independent-based Noise-Robust Speaker Verification
A speaker verification system models individual speakers using different speech features to improve their robustness. However, redundant features degrade the system's performance. This paper presents Statistically Significant Duration-Independent Mel frequency Cepstral Coefficients (SSDI-MFCC) features with the Extreme Gradient Boost classifier for improving the noise-robustness of speaker models. Eight statistical descriptors are used to generate signal duration-independent features, and a statistically significant feature subset is obtained using a t-test. A redeveloped Librispeech database by adding noises from the AURORA database to simulate real-world test conditions for speaker verification is used for evaluation. The SSDI-MFCC is compared with Principal Component Analysis (PCA) and Genetic Algorithm (GA). The comparative results showed average equal error rate improvements by 4.93 % and 3.48 % with the SSDI-MFCC than GA-MFCC and PCA-MFCC in clean and noisy conditions, respectively. A significant reduction in verification time is observed using SSDI-MFCC than the complete feature set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信