基于叶片纹理特征的支持向量机(SVM)方法在丁香类型分类中的应用

Sadri Talib, Sakinah Sudin, Muhammad Dzikrullah Suratin
{"title":"基于叶片纹理特征的支持向量机(SVM)方法在丁香类型分类中的应用","authors":"Sadri Talib, Sakinah Sudin, Muhammad Dzikrullah Suratin","doi":"10.30787/restia.v2i1.1364","DOIUrl":null,"url":null,"abstract":"Leaves are a very important plant component because they play an important role in differentiating plant species, including clove plants. Currently, the identification of clove species, namely Afo, Siputih, and Zanzibar, relies on manual observation of the characteristics of the fruit and flowers, which can take a long time, especially considering the long fruiting period of the clove plant. To answer this problem, the authors conducted a study to classify the three types of clove leaves based on the characteristics and texture of the Gray gray-level co-occurrence Matrix (GLCM), which includes four parameters: Contrast, Correlation, Energy, and Homogeneity. \nThe Support Vector Machine (SVM) classification algorithm processes extracted feature values and accurately class leaves. This study achieves the highest accuracy of 56.67% on an image size of 250x250 pixels and 48.33% on an image size of 150x150 pixels using 150 training data and 60 test data. These results indicate the potential of automatic leaf classification in efficiently identifying clove plant species. \nKeywords : Clove, Leaf, Processing, Texture, SVM \n ","PeriodicalId":517273,"journal":{"name":"Jurnal Riset Sistem dan Teknologi Informasi","volume":"35 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) PADA KLASIFIKASI JENIS CENGKEH BERDASARKAN FITUR TEKSTUR DAUN\",\"authors\":\"Sadri Talib, Sakinah Sudin, Muhammad Dzikrullah Suratin\",\"doi\":\"10.30787/restia.v2i1.1364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leaves are a very important plant component because they play an important role in differentiating plant species, including clove plants. Currently, the identification of clove species, namely Afo, Siputih, and Zanzibar, relies on manual observation of the characteristics of the fruit and flowers, which can take a long time, especially considering the long fruiting period of the clove plant. To answer this problem, the authors conducted a study to classify the three types of clove leaves based on the characteristics and texture of the Gray gray-level co-occurrence Matrix (GLCM), which includes four parameters: Contrast, Correlation, Energy, and Homogeneity. \\nThe Support Vector Machine (SVM) classification algorithm processes extracted feature values and accurately class leaves. This study achieves the highest accuracy of 56.67% on an image size of 250x250 pixels and 48.33% on an image size of 150x150 pixels using 150 training data and 60 test data. These results indicate the potential of automatic leaf classification in efficiently identifying clove plant species. \\nKeywords : Clove, Leaf, Processing, Texture, SVM \\n \",\"PeriodicalId\":517273,\"journal\":{\"name\":\"Jurnal Riset Sistem dan Teknologi Informasi\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Riset Sistem dan Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30787/restia.v2i1.1364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Sistem dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30787/restia.v2i1.1364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

叶片是一种非常重要的植物成分,因为它在区分包括丁香植物在内的植物物种方面发挥着重要作用。目前,丁香品种(即阿福、西普提和桑给巴尔)的鉴定主要依靠人工观察果实和花朵的特征,这可能需要很长时间,尤其是考虑到丁香植物的结果期较长。为了解决这个问题,作者进行了一项研究,根据灰度级共现矩阵(GLCM)的特征和纹理对三种丁香叶进行分类:对比度、相关性、能量和同质性。支持向量机(SVM)分类算法处理提取的特征值,并对树叶进行准确分类。这项研究使用 150 个训练数据和 60 个测试数据,在 250x250 像素大小的图像上取得了 56.67% 的最高准确率,在 150x150 像素大小的图像上取得了 48.33% 的最高准确率。这些结果表明了叶片自动分类在有效识别丁香植物种类方面的潜力。关键词: 丁香 叶片 处理 纹理 SVM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) PADA KLASIFIKASI JENIS CENGKEH BERDASARKAN FITUR TEKSTUR DAUN
Leaves are a very important plant component because they play an important role in differentiating plant species, including clove plants. Currently, the identification of clove species, namely Afo, Siputih, and Zanzibar, relies on manual observation of the characteristics of the fruit and flowers, which can take a long time, especially considering the long fruiting period of the clove plant. To answer this problem, the authors conducted a study to classify the three types of clove leaves based on the characteristics and texture of the Gray gray-level co-occurrence Matrix (GLCM), which includes four parameters: Contrast, Correlation, Energy, and Homogeneity. The Support Vector Machine (SVM) classification algorithm processes extracted feature values and accurately class leaves. This study achieves the highest accuracy of 56.67% on an image size of 250x250 pixels and 48.33% on an image size of 150x150 pixels using 150 training data and 60 test data. These results indicate the potential of automatic leaf classification in efficiently identifying clove plant species. Keywords : Clove, Leaf, Processing, Texture, SVM  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信