利用超调 RFE 和深度网格网络检测 SDN 中 DDoS 攻击的新型双重优化 IDS

Nalayini C.M. , Jeevaa Katiravan , Geetha S. , Christy Eunaicy J.I.
{"title":"利用超调 RFE 和深度网格网络检测 SDN 中 DDoS 攻击的新型双重优化 IDS","authors":"Nalayini C.M. ,&nbsp;Jeevaa Katiravan ,&nbsp;Geetha S. ,&nbsp;Christy Eunaicy J.I.","doi":"10.1016/j.csa.2024.100042","DOIUrl":null,"url":null,"abstract":"<div><p>Technological advancement is one of the factors contributing to a rise of susceptible cyberattacks. Distributed denial of service (DDoS) attack reduces the efficiency of network servers by saturating them with unwanted data and preventing authorized clients from accessing them. Due to the centralized architecture of Software Defined Network (SDN), it faces a number of security vulnerabilities. In SDN, DDoS attack is one of the main strikes on the control planes. A novel Optimized Dual Intrusion Detection System is proposed to identify DDoS and Non-DDoS attack more quickly with best proposed models. Hyper Tuned parameter optimization is carried on Logistic Regression, Decision Tree and Random Forest algorithms to find the best parameters. RFE with Repeated Stratified K-fold feature selection is used using the best parameters to reduce the 77 features to 4 features. A novel Deep Grid Network combines hyper-tuned classifiers with 7 other machine learning algorithms to produce 21 models. An ensemble technique uses 6 best models from 21 models for the best prediction of DDoS attack. A new dataset is also generated through Mininet for proper validation of the model.</p></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"2 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772918424000080/pdfft?md5=5933553e559cb05dfdb27a2a1f01f897&pid=1-s2.0-S2772918424000080-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel dual optimized IDS to detect DDoS attack in SDN using hyper tuned RFE and deep grid network\",\"authors\":\"Nalayini C.M. ,&nbsp;Jeevaa Katiravan ,&nbsp;Geetha S. ,&nbsp;Christy Eunaicy J.I.\",\"doi\":\"10.1016/j.csa.2024.100042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Technological advancement is one of the factors contributing to a rise of susceptible cyberattacks. Distributed denial of service (DDoS) attack reduces the efficiency of network servers by saturating them with unwanted data and preventing authorized clients from accessing them. Due to the centralized architecture of Software Defined Network (SDN), it faces a number of security vulnerabilities. In SDN, DDoS attack is one of the main strikes on the control planes. A novel Optimized Dual Intrusion Detection System is proposed to identify DDoS and Non-DDoS attack more quickly with best proposed models. Hyper Tuned parameter optimization is carried on Logistic Regression, Decision Tree and Random Forest algorithms to find the best parameters. RFE with Repeated Stratified K-fold feature selection is used using the best parameters to reduce the 77 features to 4 features. A novel Deep Grid Network combines hyper-tuned classifiers with 7 other machine learning algorithms to produce 21 models. An ensemble technique uses 6 best models from 21 models for the best prediction of DDoS attack. A new dataset is also generated through Mininet for proper validation of the model.</p></div>\",\"PeriodicalId\":100351,\"journal\":{\"name\":\"Cyber Security and Applications\",\"volume\":\"2 \",\"pages\":\"Article 100042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000080/pdfft?md5=5933553e559cb05dfdb27a2a1f01f897&pid=1-s2.0-S2772918424000080-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber Security and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

技术进步是导致易受网络攻击的因素之一。分布式拒绝服务(DDoS)攻击通过向网络服务器饱和地发送不需要的数据,阻止授权客户访问网络服务器,从而降低了网络服务器的效率。由于软件定义网络(SDN)的集中式架构,它面临着许多安全漏洞。在 SDN 中,DDoS 攻击是对控制平面的主要攻击之一。我们提出了一种新颖的优化双入侵检测系统,以最佳建议模型更快地识别 DDoS 和非 DDoS 攻击。在逻辑回归、决策树和随机森林算法上进行了超调参数优化,以找到最佳参数。使用最佳参数的重复分层 K 折特征选择 RFE 将 77 个特征减少到 4 个。新颖的深度网格网络将超调整分类器与其他 7 种机器学习算法相结合,生成 21 个模型。集合技术使用 21 个模型中的 6 个最佳模型,以获得 DDoS 攻击的最佳预测结果。此外,还通过 Mininet 生成了一个新的数据集,以便对模型进行适当验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel dual optimized IDS to detect DDoS attack in SDN using hyper tuned RFE and deep grid network

Technological advancement is one of the factors contributing to a rise of susceptible cyberattacks. Distributed denial of service (DDoS) attack reduces the efficiency of network servers by saturating them with unwanted data and preventing authorized clients from accessing them. Due to the centralized architecture of Software Defined Network (SDN), it faces a number of security vulnerabilities. In SDN, DDoS attack is one of the main strikes on the control planes. A novel Optimized Dual Intrusion Detection System is proposed to identify DDoS and Non-DDoS attack more quickly with best proposed models. Hyper Tuned parameter optimization is carried on Logistic Regression, Decision Tree and Random Forest algorithms to find the best parameters. RFE with Repeated Stratified K-fold feature selection is used using the best parameters to reduce the 77 features to 4 features. A novel Deep Grid Network combines hyper-tuned classifiers with 7 other machine learning algorithms to produce 21 models. An ensemble technique uses 6 best models from 21 models for the best prediction of DDoS attack. A new dataset is also generated through Mininet for proper validation of the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信