Farhad Javanmardi, Sudarsana Reddy Kadiri, Paavo Alku
{"title":"用于从语音中检测构音障碍并对其严重程度进行分类的预训练模型","authors":"Farhad Javanmardi, Sudarsana Reddy Kadiri, Paavo Alku","doi":"10.1016/j.specom.2024.103047","DOIUrl":null,"url":null,"abstract":"<div><p>Automatic detection and severity level classification of dysarthria from speech enables non-invasive and effective diagnosis that helps clinical decisions about medication and therapy of patients. In this work, three pre-trained models (wav2vec2-BASE, wav2vec2-LARGE, and HuBERT) are studied to extract features to build automatic detection and severity level classification systems for dysarthric speech. The experiments were conducted using two publicly available databases (UA-Speech and TORGO). One machine learning-based model (support vector machine, SVM) and one deep learning-based model (convolutional neural network, CNN) was used as the classifier. In order to compare the performance of the wav2vec2-BASE, wav2vec2-LARGE, and HuBERT features, three popular acoustic feature sets, namely, mel-frequency cepstral coefficients (MFCCs), openSMILE and extended Geneva minimalistic acoustic parameter set (eGeMAPS) were considered. Experimental results revealed that the features derived from the pre-trained models outperformed the three baseline features. It was also found that the HuBERT features performed better than the wav2vec2-BASE and wav2vec2-LARGE features. In particular, when compared to the best-performing baseline feature (openSMILE), the HuBERT features showed in the detection problem absolute accuracy improvements that varied between 1.33% (the SVM classifier, the TORGO database) and 2.86% (the SVM classifier, the UA-Speech database). In the severity level classification problem, the HuBERT features showed absolute accuracy improvements that varied between 6.54% (the SVM classifier, the TORGO database) and 10.46% (the SVM classifier, the UA-Speech database) compared to the best-performing baseline feature (eGeMAPS).</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"158 ","pages":"Article 103047"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167639324000190/pdfft?md5=06e82e9568d6d0d206292d39eb27d9c4&pid=1-s2.0-S0167639324000190-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pre-trained models for detection and severity level classification of dysarthria from speech\",\"authors\":\"Farhad Javanmardi, Sudarsana Reddy Kadiri, Paavo Alku\",\"doi\":\"10.1016/j.specom.2024.103047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automatic detection and severity level classification of dysarthria from speech enables non-invasive and effective diagnosis that helps clinical decisions about medication and therapy of patients. In this work, three pre-trained models (wav2vec2-BASE, wav2vec2-LARGE, and HuBERT) are studied to extract features to build automatic detection and severity level classification systems for dysarthric speech. The experiments were conducted using two publicly available databases (UA-Speech and TORGO). One machine learning-based model (support vector machine, SVM) and one deep learning-based model (convolutional neural network, CNN) was used as the classifier. In order to compare the performance of the wav2vec2-BASE, wav2vec2-LARGE, and HuBERT features, three popular acoustic feature sets, namely, mel-frequency cepstral coefficients (MFCCs), openSMILE and extended Geneva minimalistic acoustic parameter set (eGeMAPS) were considered. Experimental results revealed that the features derived from the pre-trained models outperformed the three baseline features. It was also found that the HuBERT features performed better than the wav2vec2-BASE and wav2vec2-LARGE features. In particular, when compared to the best-performing baseline feature (openSMILE), the HuBERT features showed in the detection problem absolute accuracy improvements that varied between 1.33% (the SVM classifier, the TORGO database) and 2.86% (the SVM classifier, the UA-Speech database). In the severity level classification problem, the HuBERT features showed absolute accuracy improvements that varied between 6.54% (the SVM classifier, the TORGO database) and 10.46% (the SVM classifier, the UA-Speech database) compared to the best-performing baseline feature (eGeMAPS).</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"158 \",\"pages\":\"Article 103047\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167639324000190/pdfft?md5=06e82e9568d6d0d206292d39eb27d9c4&pid=1-s2.0-S0167639324000190-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639324000190\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639324000190","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Pre-trained models for detection and severity level classification of dysarthria from speech
Automatic detection and severity level classification of dysarthria from speech enables non-invasive and effective diagnosis that helps clinical decisions about medication and therapy of patients. In this work, three pre-trained models (wav2vec2-BASE, wav2vec2-LARGE, and HuBERT) are studied to extract features to build automatic detection and severity level classification systems for dysarthric speech. The experiments were conducted using two publicly available databases (UA-Speech and TORGO). One machine learning-based model (support vector machine, SVM) and one deep learning-based model (convolutional neural network, CNN) was used as the classifier. In order to compare the performance of the wav2vec2-BASE, wav2vec2-LARGE, and HuBERT features, three popular acoustic feature sets, namely, mel-frequency cepstral coefficients (MFCCs), openSMILE and extended Geneva minimalistic acoustic parameter set (eGeMAPS) were considered. Experimental results revealed that the features derived from the pre-trained models outperformed the three baseline features. It was also found that the HuBERT features performed better than the wav2vec2-BASE and wav2vec2-LARGE features. In particular, when compared to the best-performing baseline feature (openSMILE), the HuBERT features showed in the detection problem absolute accuracy improvements that varied between 1.33% (the SVM classifier, the TORGO database) and 2.86% (the SVM classifier, the UA-Speech database). In the severity level classification problem, the HuBERT features showed absolute accuracy improvements that varied between 6.54% (the SVM classifier, the TORGO database) and 10.46% (the SVM classifier, the UA-Speech database) compared to the best-performing baseline feature (eGeMAPS).
期刊介绍:
Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results.
The journal''s primary objectives are:
• to present a forum for the advancement of human and human-machine speech communication science;
• to stimulate cross-fertilization between different fields of this domain;
• to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.