以 ChatGPT 为原型理论基准:使用技术接受模型的实验研究

Tiong-Thye Goh , Xin Dai , Yanwu Yang
{"title":"以 ChatGPT 为原型理论基准:使用技术接受模型的实验研究","authors":"Tiong-Thye Goh ,&nbsp;Xin Dai ,&nbsp;Yanwu Yang","doi":"10.1016/j.tbench.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the paradigm of leveraging ChatGPT as a benchmark tool for theory prototyping in conceptual research. Specifically, we conducted two experimental studies using the classical technology acceptance model (TAM) to demonstrate and evaluate ChatGPT's capability of comprehending theoretical concepts, discriminating between constructs, and generating meaningful responses. Results of the two studies indicate that ChatGPT can generate responses aligned with the TAM theory and constructs. Key metrics including the factors loading, internal consistency reliability, and convergence reliability of the measurement model surpass the minimum threshold, thus confirming the validity of TAM constructs. Moreover, supported hypotheses provide an evidence for the nomological validity of TAM constructs. However, both of the two studies show a high Heterotrait–Monotrait ratio of correlations (HTMT) among TAM constructs, suggesting a concern about discriminant validity. Furthermore, high duplicated response rates were identified and potential biases regarding gender, usage experiences, perceived usefulness, and behavioural intention were revealed in ChatGPT-generated samples. Therefore, it calls for additional efforts in LLM to address performance metrics related to duplicated responses, the strength of discriminant validity, the impact of prompt design, and the generalizability of findings across contexts.</div></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"3 4","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking ChatGPT for prototyping theories: Experimental studies using the technology acceptance model\",\"authors\":\"Tiong-Thye Goh ,&nbsp;Xin Dai ,&nbsp;Yanwu Yang\",\"doi\":\"10.1016/j.tbench.2024.100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the paradigm of leveraging ChatGPT as a benchmark tool for theory prototyping in conceptual research. Specifically, we conducted two experimental studies using the classical technology acceptance model (TAM) to demonstrate and evaluate ChatGPT's capability of comprehending theoretical concepts, discriminating between constructs, and generating meaningful responses. Results of the two studies indicate that ChatGPT can generate responses aligned with the TAM theory and constructs. Key metrics including the factors loading, internal consistency reliability, and convergence reliability of the measurement model surpass the minimum threshold, thus confirming the validity of TAM constructs. Moreover, supported hypotheses provide an evidence for the nomological validity of TAM constructs. However, both of the two studies show a high Heterotrait–Monotrait ratio of correlations (HTMT) among TAM constructs, suggesting a concern about discriminant validity. Furthermore, high duplicated response rates were identified and potential biases regarding gender, usage experiences, perceived usefulness, and behavioural intention were revealed in ChatGPT-generated samples. Therefore, it calls for additional efforts in LLM to address performance metrics related to duplicated responses, the strength of discriminant validity, the impact of prompt design, and the generalizability of findings across contexts.</div></div>\",\"PeriodicalId\":100155,\"journal\":{\"name\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"volume\":\"3 4\",\"pages\":\"Article 100153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277248592400005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277248592400005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking ChatGPT for prototyping theories: Experimental studies using the technology acceptance model
This paper explores the paradigm of leveraging ChatGPT as a benchmark tool for theory prototyping in conceptual research. Specifically, we conducted two experimental studies using the classical technology acceptance model (TAM) to demonstrate and evaluate ChatGPT's capability of comprehending theoretical concepts, discriminating between constructs, and generating meaningful responses. Results of the two studies indicate that ChatGPT can generate responses aligned with the TAM theory and constructs. Key metrics including the factors loading, internal consistency reliability, and convergence reliability of the measurement model surpass the minimum threshold, thus confirming the validity of TAM constructs. Moreover, supported hypotheses provide an evidence for the nomological validity of TAM constructs. However, both of the two studies show a high Heterotrait–Monotrait ratio of correlations (HTMT) among TAM constructs, suggesting a concern about discriminant validity. Furthermore, high duplicated response rates were identified and potential biases regarding gender, usage experiences, perceived usefulness, and behavioural intention were revealed in ChatGPT-generated samples. Therefore, it calls for additional efforts in LLM to address performance metrics related to duplicated responses, the strength of discriminant validity, the impact of prompt design, and the generalizability of findings across contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信