基于人工智能的肝癌病理分析:当前进展和解释策略

Guang-Yu Ding , Jie-Yi Shi , Xiao-Dong Wang , Bo Yan , Xi-Yang Liu , Qiang Gao
{"title":"基于人工智能的肝癌病理分析:当前进展和解释策略","authors":"Guang-Yu Ding ,&nbsp;Jie-Yi Shi ,&nbsp;Xiao-Dong Wang ,&nbsp;Bo Yan ,&nbsp;Xi-Yang Liu ,&nbsp;Qiang Gao","doi":"10.1016/j.iliver.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, significant advances have been achieved in liver cancer management with the development of artificial intelligence (AI). AI-based pathological analysis can extract crucial information from whole slide images to assist clinicians in all aspects from diagnosis to prognosis and molecular profiling. However, AI techniques have a “black box” nature, which means that interpretability is of utmost importance because it is key to ensuring the reliability of the methods and building trust among clinicians for actual clinical implementation. In this paper, we provide an overview of current technical advancements in the AI-based pathological analysis of liver cancer, and delve into the strategies used in recent studies to unravel the “black box” of AI's decision-making process.</p></div>","PeriodicalId":100657,"journal":{"name":"iLIVER","volume":"3 1","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772947824000070/pdfft?md5=066fabb4fd4ae8d1a5a1663b2066d90e&pid=1-s2.0-S2772947824000070-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based pathological analysis of liver cancer: Current advancements and interpretative strategies\",\"authors\":\"Guang-Yu Ding ,&nbsp;Jie-Yi Shi ,&nbsp;Xiao-Dong Wang ,&nbsp;Bo Yan ,&nbsp;Xi-Yang Liu ,&nbsp;Qiang Gao\",\"doi\":\"10.1016/j.iliver.2024.100082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, significant advances have been achieved in liver cancer management with the development of artificial intelligence (AI). AI-based pathological analysis can extract crucial information from whole slide images to assist clinicians in all aspects from diagnosis to prognosis and molecular profiling. However, AI techniques have a “black box” nature, which means that interpretability is of utmost importance because it is key to ensuring the reliability of the methods and building trust among clinicians for actual clinical implementation. In this paper, we provide an overview of current technical advancements in the AI-based pathological analysis of liver cancer, and delve into the strategies used in recent studies to unravel the “black box” of AI's decision-making process.</p></div>\",\"PeriodicalId\":100657,\"journal\":{\"name\":\"iLIVER\",\"volume\":\"3 1\",\"pages\":\"Article 100082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772947824000070/pdfft?md5=066fabb4fd4ae8d1a5a1663b2066d90e&pid=1-s2.0-S2772947824000070-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iLIVER\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772947824000070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iLIVER","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772947824000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着人工智能(AI)的发展,肝癌治疗取得了重大进展。基于人工智能的病理分析可以从整张切片图像中提取关键信息,从而在诊断、预后和分子谱分析等各个方面为临床医生提供帮助。然而,人工智能技术具有 "黑箱 "性质,这意味着可解释性至关重要,因为它是确保方法可靠性和在临床实际应用中建立临床医生信任的关键。在本文中,我们将概述当前基于人工智能的肝癌病理分析的技术进展,并深入探讨近期研究中用于揭开人工智能决策过程 "黑箱 "的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-based pathological analysis of liver cancer: Current advancements and interpretative strategies

In recent years, significant advances have been achieved in liver cancer management with the development of artificial intelligence (AI). AI-based pathological analysis can extract crucial information from whole slide images to assist clinicians in all aspects from diagnosis to prognosis and molecular profiling. However, AI techniques have a “black box” nature, which means that interpretability is of utmost importance because it is key to ensuring the reliability of the methods and building trust among clinicians for actual clinical implementation. In this paper, we provide an overview of current technical advancements in the AI-based pathological analysis of liver cancer, and delve into the strategies used in recent studies to unravel the “black box” of AI's decision-making process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信