利用卡尔曼滤波和机器学习相结合的方法,整合多用户数字化行动,绘制沟壑轮廓图

Miguel Vallejo Orti , Katharina Anders , Oluibukun Ajayi , Olaf Bubenzer , Bernhard Höfle
{"title":"利用卡尔曼滤波和机器学习相结合的方法,整合多用户数字化行动,绘制沟壑轮廓图","authors":"Miguel Vallejo Orti ,&nbsp;Katharina Anders ,&nbsp;Oluibukun Ajayi ,&nbsp;Olaf Bubenzer ,&nbsp;Bernhard Höfle","doi":"10.1016/j.ophoto.2024.100059","DOIUrl":null,"url":null,"abstract":"<div><p>Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-situ authoritative mapping, collaborative approaches enable volunteers to generate redundant independent geoinformation by digitising Earth observation imagery. We face the challenge of mapping the complex gully outlines integrating multi-user contributions of the same gully network. Comparing Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto base maps, we examine the volunteered geographic information process and multi-contribution integration using Kalman filtering and machine learning to segment a gully border in a remote area in northwestern Namibia. The Kalman filtering integrates the different lines finding a smoothed solution, and a Random Forest model is used to identify mapping conditions and terrain features as key predictors for evaluating contributors' digitising quality. Assessing results with expert-based reference data, we identify ten contributions as optimal, yielding root mean square distance values of 19.1 m, 15.9 m and 16.6 m, and variability of 2.0 m, 4.2 m and 3.8 m (root mean square distance standard deviation) for Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto, respectively. Eliminating the lowest performing contributions for Sentinel 2 using a Random Forest regression-based quality indicator improves the accuracy by up to 35% in the root mean square distance compared to a random selection, and up to 54% compared to a supervised remote sensing classification. Results for Sentinel 2 show that low slope, low terrain ruggedness index, and high normalised difference vegetation index values are correlated to high spatial mapping deviations, with Pearson correlation coefficients of −0.61, −0.5, and 0.18, respectively. Our approach is a powerful alternative for authoritative mapping of morphologically complex environmental phenomena and can provide independent reference data for supervised automatic remote sensing analysis.</p></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"12 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667393224000024/pdfft?md5=48a1afef19ee80fc26305409481984b5&pid=1-s2.0-S2667393224000024-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning\",\"authors\":\"Miguel Vallejo Orti ,&nbsp;Katharina Anders ,&nbsp;Oluibukun Ajayi ,&nbsp;Olaf Bubenzer ,&nbsp;Bernhard Höfle\",\"doi\":\"10.1016/j.ophoto.2024.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-situ authoritative mapping, collaborative approaches enable volunteers to generate redundant independent geoinformation by digitising Earth observation imagery. We face the challenge of mapping the complex gully outlines integrating multi-user contributions of the same gully network. Comparing Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto base maps, we examine the volunteered geographic information process and multi-contribution integration using Kalman filtering and machine learning to segment a gully border in a remote area in northwestern Namibia. The Kalman filtering integrates the different lines finding a smoothed solution, and a Random Forest model is used to identify mapping conditions and terrain features as key predictors for evaluating contributors' digitising quality. Assessing results with expert-based reference data, we identify ten contributions as optimal, yielding root mean square distance values of 19.1 m, 15.9 m and 16.6 m, and variability of 2.0 m, 4.2 m and 3.8 m (root mean square distance standard deviation) for Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto, respectively. Eliminating the lowest performing contributions for Sentinel 2 using a Random Forest regression-based quality indicator improves the accuracy by up to 35% in the root mean square distance compared to a random selection, and up to 54% compared to a supervised remote sensing classification. Results for Sentinel 2 show that low slope, low terrain ruggedness index, and high normalised difference vegetation index values are correlated to high spatial mapping deviations, with Pearson correlation coefficients of −0.61, −0.5, and 0.18, respectively. Our approach is a powerful alternative for authoritative mapping of morphologically complex environmental phenomena and can provide independent reference data for supervised automatic remote sensing analysis.</p></div>\",\"PeriodicalId\":100730,\"journal\":{\"name\":\"ISPRS Open Journal of Photogrammetry and Remote Sensing\",\"volume\":\"12 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667393224000024/pdfft?md5=48a1afef19ee80fc26305409481984b5&pid=1-s2.0-S2667393224000024-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Open Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667393224000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393224000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为自动遥感方法生成可靠参考数据的可扩展和可转移方法至关重要,特别是对于绘制复杂的地球表面过程图,如人口稀少和交通不便地区的沟壑侵蚀图。作为劳动密集型原地权威测绘的替代方法,协作方法使志愿者能够通过对地球观测图像进行数字化来生成冗余的独立地理信息。我们面临的挑战是如何绘制复杂的沟壑轮廓图,将同一沟壑网络的多用户贡献整合在一起。通过比较哨兵 2 号、必应空中摄影和无人驾驶航空飞行器正射影像基础地图,我们利用卡尔曼滤波和机器学习对自愿提供的地理信息过程和多方贡献整合进行了研究,以划分纳米比亚西北部偏远地区的沟壑边界。卡尔曼滤波将不同的线条整合在一起,找到一个平滑的解决方案,并使用随机森林模型确定制图条件和地形特征,作为评估贡献者数字化质量的关键预测因素。利用基于专家的参考数据对结果进行评估后,我们确定了十项最佳贡献,其中哨兵 2 号、Bing Aerial 和无人飞行器正射影像的均方根距离值分别为 19.1 米、15.9 米和 16.6 米,可变性分别为 2.0 米、4.2 米和 3.8 米(均方根距离标准偏差)。与随机选择相比,使用基于随机森林回归的质量指标剔除性能最低的 "哨兵 2 号 "数据,可将均方根距离的准确度提高 35%,与监督遥感分类相比,可将准确度提高 54%。哨兵 2 号的结果显示,低坡度、低地形崎岖指数和高归一化差异植被指数值与高空间绘图偏差相关,皮尔逊相关系数分别为-0.61、-0.5 和 0.18。我们的方法是对形态复杂的环境现象进行权威测绘的有力替代方案,可为监督式自动遥感分析提供独立的参考数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning

Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning

Scalable and transferable methods for generating reliable reference data for automated remote sensing approaches are crucial, especially for mapping complex Earth surface processes such as gully erosion in low-populated and inaccessible areas. As an alternative for the labour-intense in-situ authoritative mapping, collaborative approaches enable volunteers to generate redundant independent geoinformation by digitising Earth observation imagery. We face the challenge of mapping the complex gully outlines integrating multi-user contributions of the same gully network. Comparing Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto base maps, we examine the volunteered geographic information process and multi-contribution integration using Kalman filtering and machine learning to segment a gully border in a remote area in northwestern Namibia. The Kalman filtering integrates the different lines finding a smoothed solution, and a Random Forest model is used to identify mapping conditions and terrain features as key predictors for evaluating contributors' digitising quality. Assessing results with expert-based reference data, we identify ten contributions as optimal, yielding root mean square distance values of 19.1 m, 15.9 m and 16.6 m, and variability of 2.0 m, 4.2 m and 3.8 m (root mean square distance standard deviation) for Sentinel 2, Bing Aerial, and unoccupied aerial vehicle orthophoto, respectively. Eliminating the lowest performing contributions for Sentinel 2 using a Random Forest regression-based quality indicator improves the accuracy by up to 35% in the root mean square distance compared to a random selection, and up to 54% compared to a supervised remote sensing classification. Results for Sentinel 2 show that low slope, low terrain ruggedness index, and high normalised difference vegetation index values are correlated to high spatial mapping deviations, with Pearson correlation coefficients of −0.61, −0.5, and 0.18, respectively. Our approach is a powerful alternative for authoritative mapping of morphologically complex environmental phenomena and can provide independent reference data for supervised automatic remote sensing analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信