{"title":"甲酸辅助合成 Cu-CuO-ZnO 复合催化剂,用于将 1,4-丁二醇无受体选择性脱氢为 γ-丁内酯","authors":"Paleti Gidyonu , Ajmeera Nagu , Sreedhar Gundekari , Mohan Varkolu","doi":"10.1016/j.catcom.2024.106870","DOIUrl":null,"url":null,"abstract":"<div><p>The Cu-CuO-ZnO composite catalyst synthesized through the formic acid-assisted method, underwent thorough characterization via XRD, N<sub>2</sub> physisorption, TPR, TPD, TGA, XPS, and TEM. When applied to the selective dehydrogenation of 1,4-butanediol, this catalyst outperformed counterparts prepared through co-precipitation and impregnation methods. The superiority is attributed to the formic acid-assisted method yielding smaller Cu nanoparticles and some CuO species, undergoing in-situ reduction by dehydrogenation-generated H<sub>2</sub>. This process results in nascent Cu nanoparticles, enhancing catalytic performance. Notably, the catalyst demonstrated remarkable stability over a 100 h time-on-stream without discrepancies, highlighting the robustness of the formic acid-assisted method for 1,4-butanediol dehydrogenation.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106870"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156673672400030X/pdfft?md5=c9d71f82f8469e890c9ed1bd1f0ad696&pid=1-s2.0-S156673672400030X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Formic acid assisted synthesis of Cu-CuO-ZnO composite catalyst for acceptor free selective dehydrogenation of 1, 4-butanediol to γ-butrylactone\",\"authors\":\"Paleti Gidyonu , Ajmeera Nagu , Sreedhar Gundekari , Mohan Varkolu\",\"doi\":\"10.1016/j.catcom.2024.106870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Cu-CuO-ZnO composite catalyst synthesized through the formic acid-assisted method, underwent thorough characterization via XRD, N<sub>2</sub> physisorption, TPR, TPD, TGA, XPS, and TEM. When applied to the selective dehydrogenation of 1,4-butanediol, this catalyst outperformed counterparts prepared through co-precipitation and impregnation methods. The superiority is attributed to the formic acid-assisted method yielding smaller Cu nanoparticles and some CuO species, undergoing in-situ reduction by dehydrogenation-generated H<sub>2</sub>. This process results in nascent Cu nanoparticles, enhancing catalytic performance. Notably, the catalyst demonstrated remarkable stability over a 100 h time-on-stream without discrepancies, highlighting the robustness of the formic acid-assisted method for 1,4-butanediol dehydrogenation.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106870\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S156673672400030X/pdfft?md5=c9d71f82f8469e890c9ed1bd1f0ad696&pid=1-s2.0-S156673672400030X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156673672400030X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156673672400030X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Formic acid assisted synthesis of Cu-CuO-ZnO composite catalyst for acceptor free selective dehydrogenation of 1, 4-butanediol to γ-butrylactone
The Cu-CuO-ZnO composite catalyst synthesized through the formic acid-assisted method, underwent thorough characterization via XRD, N2 physisorption, TPR, TPD, TGA, XPS, and TEM. When applied to the selective dehydrogenation of 1,4-butanediol, this catalyst outperformed counterparts prepared through co-precipitation and impregnation methods. The superiority is attributed to the formic acid-assisted method yielding smaller Cu nanoparticles and some CuO species, undergoing in-situ reduction by dehydrogenation-generated H2. This process results in nascent Cu nanoparticles, enhancing catalytic performance. Notably, the catalyst demonstrated remarkable stability over a 100 h time-on-stream without discrepancies, highlighting the robustness of the formic acid-assisted method for 1,4-butanediol dehydrogenation.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.