Jency Rubia J, Sherin Shibi C, Rosi A, Babitha Lincy R, E. Nithila
{"title":"面向量子计算应用的深冷温度 CMOS 电路和系统设计","authors":"Jency Rubia J, Sherin Shibi C, Rosi A, Babitha Lincy R, E. Nithila","doi":"10.4108/ew.4997","DOIUrl":null,"url":null,"abstract":"Quantum computing is a fascinating and rapidly evolving field of technology that promises to revolutionize many areas of science, engineering, and society. The fundamental unit of quantum computing is the quantum bit that can exist in two or more states concurrently, as opposed to a classical bit that can only be either 0 or 1. Any subatomic element, including atoms, electrons, and photons, can be used to implement qubits. The chosen sub-atomic elements should have quantum mechanical properties. Most commonly, photons have been used to implement qubits. Qubits can be manipulated and read by applying external fields or pulses, such as lasers, magnets, or microwaves. Quantum computers are currently suffering from various complications such as size, operating temperature, coherence problems, entanglement, etc. The realization of quantum computing, a novel paradigm that uses quantum mechanical phenomena to do computations that are not possible with classical computers, is made possible, most crucially, by the need for a quantum processor and a quantum SOC. As a result, Cryo-CMOS technology can make it possible to integrate a Quantum system on a chip. Cryo-CMOS devices are electronic circuits that operate at cryogenic temperatures, usually below 77 K (−196 °C).","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing Applications\",\"authors\":\"Jency Rubia J, Sherin Shibi C, Rosi A, Babitha Lincy R, E. Nithila\",\"doi\":\"10.4108/ew.4997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing is a fascinating and rapidly evolving field of technology that promises to revolutionize many areas of science, engineering, and society. The fundamental unit of quantum computing is the quantum bit that can exist in two or more states concurrently, as opposed to a classical bit that can only be either 0 or 1. Any subatomic element, including atoms, electrons, and photons, can be used to implement qubits. The chosen sub-atomic elements should have quantum mechanical properties. Most commonly, photons have been used to implement qubits. Qubits can be manipulated and read by applying external fields or pulses, such as lasers, magnets, or microwaves. Quantum computers are currently suffering from various complications such as size, operating temperature, coherence problems, entanglement, etc. The realization of quantum computing, a novel paradigm that uses quantum mechanical phenomena to do computations that are not possible with classical computers, is made possible, most crucially, by the need for a quantum processor and a quantum SOC. As a result, Cryo-CMOS technology can make it possible to integrate a Quantum system on a chip. Cryo-CMOS devices are electronic circuits that operate at cryogenic temperatures, usually below 77 K (−196 °C).\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.4997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing Applications
Quantum computing is a fascinating and rapidly evolving field of technology that promises to revolutionize many areas of science, engineering, and society. The fundamental unit of quantum computing is the quantum bit that can exist in two or more states concurrently, as opposed to a classical bit that can only be either 0 or 1. Any subatomic element, including atoms, electrons, and photons, can be used to implement qubits. The chosen sub-atomic elements should have quantum mechanical properties. Most commonly, photons have been used to implement qubits. Qubits can be manipulated and read by applying external fields or pulses, such as lasers, magnets, or microwaves. Quantum computers are currently suffering from various complications such as size, operating temperature, coherence problems, entanglement, etc. The realization of quantum computing, a novel paradigm that uses quantum mechanical phenomena to do computations that are not possible with classical computers, is made possible, most crucially, by the need for a quantum processor and a quantum SOC. As a result, Cryo-CMOS technology can make it possible to integrate a Quantum system on a chip. Cryo-CMOS devices are electronic circuits that operate at cryogenic temperatures, usually below 77 K (−196 °C).
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.