在前瞻性建模中利用重力数据的不确定性来估算模型参数的不确定性:估算Porcupine Destor断层的倾角和倾角不确定性的案例史

GEOPHYSICS Pub Date : 2024-02-02 DOI:10.1190/geo2023-0202.1
Fabiano Della Justina, Richard S. Smith
{"title":"在前瞻性建模中利用重力数据的不确定性来估算模型参数的不确定性:估算Porcupine Destor断层的倾角和倾角不确定性的案例史","authors":"Fabiano Della Justina, Richard S. Smith","doi":"10.1190/geo2023-0202.1","DOIUrl":null,"url":null,"abstract":"When using forward modeling to estimate model parameters, such as the dip, it is also important to estimate the corresponding uncertainty in the model parameters. For gravity data, these uncertainties are dependent on the uncertainty in the Bouguer corrected data. The uncertainty in the gravity meter reading and the height used in the free-air and Bouguer corrections are amongst the most important factors influencing the uncertainty in the Bouguer-corrected data. We used two methods for estimating the uncertainty in the Bouguer corrected data, which give similar answers (0.121 and 0.109 mGal). The uncertainty in the model parameters can be estimated by perturbing the corrected data multiple times by amounts consistent with the estimated uncertainty in the corrected gravity. The standard deviation of the model parameters derived from each perturbed dataset gives an estimate of their uncertainty. Using this procedure for Bouguer gravity profiles that cross the Porcupine Destor fault (a fault that is prospective for gold in the Timmins camp of Ontario, Canada), we found the uncertainty in the dip was one or two degrees, assuming a planar or linear fault. If the uncertainty in the corrected data had been 1 mGal (a value typical of regional surveys, instead of 0.1 mGal for a local survey), then the uncertainty in the dip is 41 degrees for the same model. Knowing the uncertainties in the corrected data is thus very important for estimating the uncertainty in model parameters. Conversely, if a model parameter is known to be required to a specific precision, the survey can be planned so that the corrected gravity has an uncertainty appropriate to achieve that precision.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":"22 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using gravity-data uncertainties in forward modeling to estimate uncertainties in model parameters: a case history in estimating the dip and the dip uncertainty of the Porcupine Destor Fault\",\"authors\":\"Fabiano Della Justina, Richard S. Smith\",\"doi\":\"10.1190/geo2023-0202.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When using forward modeling to estimate model parameters, such as the dip, it is also important to estimate the corresponding uncertainty in the model parameters. For gravity data, these uncertainties are dependent on the uncertainty in the Bouguer corrected data. The uncertainty in the gravity meter reading and the height used in the free-air and Bouguer corrections are amongst the most important factors influencing the uncertainty in the Bouguer-corrected data. We used two methods for estimating the uncertainty in the Bouguer corrected data, which give similar answers (0.121 and 0.109 mGal). The uncertainty in the model parameters can be estimated by perturbing the corrected data multiple times by amounts consistent with the estimated uncertainty in the corrected gravity. The standard deviation of the model parameters derived from each perturbed dataset gives an estimate of their uncertainty. Using this procedure for Bouguer gravity profiles that cross the Porcupine Destor fault (a fault that is prospective for gold in the Timmins camp of Ontario, Canada), we found the uncertainty in the dip was one or two degrees, assuming a planar or linear fault. If the uncertainty in the corrected data had been 1 mGal (a value typical of regional surveys, instead of 0.1 mGal for a local survey), then the uncertainty in the dip is 41 degrees for the same model. Knowing the uncertainties in the corrected data is thus very important for estimating the uncertainty in model parameters. Conversely, if a model parameter is known to be required to a specific precision, the survey can be planned so that the corrected gravity has an uncertainty appropriate to achieve that precision.\",\"PeriodicalId\":509604,\"journal\":{\"name\":\"GEOPHYSICS\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEOPHYSICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0202.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0202.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在使用前向建模估算倾角等模型参数时,估算模型参数的相应不确定性也很重要。对于重力数据,这些不确定性取决于布格校正数据的不确定性。重力仪读数的不确定性以及用于自由空气和布格校正的高度是影响布格校正数据不确定性的最重要因素。我们使用了两种方法来估算布格尔修正数据的不确定性,得到的答案相似(0.121 和 0.109 mGal)。模型参数的不确定性可以通过多次扰动修正数据来估算,扰动量与修正重力的不确定性估算值一致。根据每个扰动数据集得出的模型参数的标准偏差,就可以估算出它们的不确定性。对穿过 Porcupine Destor 断层(加拿大安大略省 Timmins 矿区的金矿远景断层)的布盖尔重力剖面使用此程序,我们发现,假设断层为平面或线性,则倾角的不确定性为一到两度。如果校正数据的不确定性为 1 毫加仑(区域勘测的典型值,而不是当地勘测的 0.1 毫加仑),那么同一模型的倾角不确定性为 41 度。因此,了解校正数据的不确定性对估算模型参数的不确定性非常重要。反之,如果已知模型参数需要达到特定的精度,则可以对勘测进行规划,使校正后的重力具有与达到该精度相适应的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using gravity-data uncertainties in forward modeling to estimate uncertainties in model parameters: a case history in estimating the dip and the dip uncertainty of the Porcupine Destor Fault
When using forward modeling to estimate model parameters, such as the dip, it is also important to estimate the corresponding uncertainty in the model parameters. For gravity data, these uncertainties are dependent on the uncertainty in the Bouguer corrected data. The uncertainty in the gravity meter reading and the height used in the free-air and Bouguer corrections are amongst the most important factors influencing the uncertainty in the Bouguer-corrected data. We used two methods for estimating the uncertainty in the Bouguer corrected data, which give similar answers (0.121 and 0.109 mGal). The uncertainty in the model parameters can be estimated by perturbing the corrected data multiple times by amounts consistent with the estimated uncertainty in the corrected gravity. The standard deviation of the model parameters derived from each perturbed dataset gives an estimate of their uncertainty. Using this procedure for Bouguer gravity profiles that cross the Porcupine Destor fault (a fault that is prospective for gold in the Timmins camp of Ontario, Canada), we found the uncertainty in the dip was one or two degrees, assuming a planar or linear fault. If the uncertainty in the corrected data had been 1 mGal (a value typical of regional surveys, instead of 0.1 mGal for a local survey), then the uncertainty in the dip is 41 degrees for the same model. Knowing the uncertainties in the corrected data is thus very important for estimating the uncertainty in model parameters. Conversely, if a model parameter is known to be required to a specific precision, the survey can be planned so that the corrected gravity has an uncertainty appropriate to achieve that precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信