合理设计的镍铁基甘油酸盐的电催化氧进化反应活性

Vivek Kumar Singh, Bibhudatta Malik, Rajashree Konar, E. S. Avraham, G. D. Nessim
{"title":"合理设计的镍铁基甘油酸盐的电催化氧进化反应活性","authors":"Vivek Kumar Singh, Bibhudatta Malik, Rajashree Konar, E. S. Avraham, G. D. Nessim","doi":"10.3390/electrochem5010005","DOIUrl":null,"url":null,"abstract":"The electrocatalytic oxygen evolution reaction (OER) is an arduous step in water splitting due to its slow reaction rate and large overpotential. Herein, we synthesized glycerate-anion-intercalated nickel–iron glycerates (NiFeGs) using a one-step solvothermal reaction. We designed various NiFeGs by tuning the molar ratio between Ni and Fe to obtain Ni4Fe1G, Ni3Fe1G, Ni3Fe2G, and Ni1Fe1G, which we tested for their OER performance. We initially analyzed the catalytic performance of powder samples immobilized on glassy carbon electrodes using a binder. Ni3Fe2G outperformed the other NiFeG compositions, including NiFe layered double hydroxide (LDH). It exhibited an overpotential of 320 mV at a current density of 10 mA cm–2 in an electrolytic solution of pH 14. We then synthesized carbon paper (CP)-modified Ni3Fe2G as a self-supported electrode (Ni3Fe2G/CP), and it exhibited a high current density (100 mA cm−2) at a low overpotential of 300 mV. The redox peak analysis for the NiFeGs revealed that the initial step of the OER is the formation of γ-NiOOH, which was further confirmed by a post-Raman analysis. We extensively analyzed the catalyst’s stability and lifetime, the nature of the active sites, and the role of the Fe content to enhance the OER performance. This work may provide the motivation to study metal-alkoxide-based efficient OER electrocatalysts that can be used for alkaline water electrolyzer applications.","PeriodicalId":508877,"journal":{"name":"Electrochem","volume":"15 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Electrocatalytic Oxygen Evolution Reaction Activity of Rationally Designed NiFe-Based Glycerates\",\"authors\":\"Vivek Kumar Singh, Bibhudatta Malik, Rajashree Konar, E. S. Avraham, G. D. Nessim\",\"doi\":\"10.3390/electrochem5010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocatalytic oxygen evolution reaction (OER) is an arduous step in water splitting due to its slow reaction rate and large overpotential. Herein, we synthesized glycerate-anion-intercalated nickel–iron glycerates (NiFeGs) using a one-step solvothermal reaction. We designed various NiFeGs by tuning the molar ratio between Ni and Fe to obtain Ni4Fe1G, Ni3Fe1G, Ni3Fe2G, and Ni1Fe1G, which we tested for their OER performance. We initially analyzed the catalytic performance of powder samples immobilized on glassy carbon electrodes using a binder. Ni3Fe2G outperformed the other NiFeG compositions, including NiFe layered double hydroxide (LDH). It exhibited an overpotential of 320 mV at a current density of 10 mA cm–2 in an electrolytic solution of pH 14. We then synthesized carbon paper (CP)-modified Ni3Fe2G as a self-supported electrode (Ni3Fe2G/CP), and it exhibited a high current density (100 mA cm−2) at a low overpotential of 300 mV. The redox peak analysis for the NiFeGs revealed that the initial step of the OER is the formation of γ-NiOOH, which was further confirmed by a post-Raman analysis. We extensively analyzed the catalyst’s stability and lifetime, the nature of the active sites, and the role of the Fe content to enhance the OER performance. This work may provide the motivation to study metal-alkoxide-based efficient OER electrocatalysts that can be used for alkaline water electrolyzer applications.\",\"PeriodicalId\":508877,\"journal\":{\"name\":\"Electrochem\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electrochem5010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electrochem5010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电催化氧进化反应(OER)因其反应速率慢、过电位大而成为水分离过程中的一个艰巨步骤。在此,我们采用一步溶解热反应合成了甘油酸阴离子互层镍铁甘油酸盐(NiFeGs)。通过调整镍和铁的摩尔比,我们设计出了各种镍铁甘油酸盐,得到了 Ni4Fe1G、Ni3Fe1G、Ni3Fe2G 和 Ni1Fe1G,并对它们的 OER 性能进行了测试。我们首先分析了使用粘合剂固定在玻璃碳电极上的粉末样品的催化性能。Ni3Fe2G 的性能优于其他 NiFeG 成分,包括 NiFe 层状双氢氧化物(LDH)。在 pH 值为 14 的电解溶液中,当电流密度为 10 mA cm-2 时,它的过电位为 320 mV。然后,我们合成了碳纸(CP)修饰的 Ni3Fe2G 作为自支撑电极(Ni3Fe2G/CP),它在 300 mV 的低过电位下表现出很高的电流密度(100 mA cm-2)。对 NiFeGs 的氧化还原峰分析表明,OER 的第一步是形成 γ-NiOOH,后拉曼分析进一步证实了这一点。我们广泛分析了催化剂的稳定性和寿命、活性位点的性质以及铁含量对提高 OER 性能的作用。这项工作可能为研究可用于碱性水电解槽的基于金属氧化物的高效 OER 电催化剂提供了动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Electrocatalytic Oxygen Evolution Reaction Activity of Rationally Designed NiFe-Based Glycerates
The electrocatalytic oxygen evolution reaction (OER) is an arduous step in water splitting due to its slow reaction rate and large overpotential. Herein, we synthesized glycerate-anion-intercalated nickel–iron glycerates (NiFeGs) using a one-step solvothermal reaction. We designed various NiFeGs by tuning the molar ratio between Ni and Fe to obtain Ni4Fe1G, Ni3Fe1G, Ni3Fe2G, and Ni1Fe1G, which we tested for their OER performance. We initially analyzed the catalytic performance of powder samples immobilized on glassy carbon electrodes using a binder. Ni3Fe2G outperformed the other NiFeG compositions, including NiFe layered double hydroxide (LDH). It exhibited an overpotential of 320 mV at a current density of 10 mA cm–2 in an electrolytic solution of pH 14. We then synthesized carbon paper (CP)-modified Ni3Fe2G as a self-supported electrode (Ni3Fe2G/CP), and it exhibited a high current density (100 mA cm−2) at a low overpotential of 300 mV. The redox peak analysis for the NiFeGs revealed that the initial step of the OER is the formation of γ-NiOOH, which was further confirmed by a post-Raman analysis. We extensively analyzed the catalyst’s stability and lifetime, the nature of the active sites, and the role of the Fe content to enhance the OER performance. This work may provide the motivation to study metal-alkoxide-based efficient OER electrocatalysts that can be used for alkaline water electrolyzer applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信