{"title":"在连通环境中获取合并间隙的车辆排合作交互策略","authors":"Hongyu Hu, Ming Cheng, Zhengyi Li, Zixuan Wang, Sheng Jin, Zhenhai Gao, Chuanliang Shen","doi":"10.1177/09544070231220701","DOIUrl":null,"url":null,"abstract":"Vehicle platoons can significantly improve traffic throughput and reduce fuel consumption and emissions. In the formation of platoons, it is crucial to generate safe merging gaps. This process requires appropriate cooperative management and control strategies. This study proposes a cooperative interaction strategy for vehicle platoons, including a communication management system and vehicle control strategies. These strategies can reduce velocity fluctuation in the process of gap generation and improve traffic performance. First, a communication management system within a platoon was developed, according to the standard communication protocol (SAE J2735), ensuring that external vehicles can join the platoon efficiently and orderly. Next, a cooperative adaptive cruise control (CACC) system was designed, which adopts feedforward and feedback control. Furthermore, the influence of increasing gaps on the stability of the platoon was considered. A cooperative control strategy for a virtual guiding vehicle (VGV) was introduced to switch the following target and linearly change the distance input of the controller. In this way, the downstream vehicles were guided to smoothly generate a safe merging gap, which can reduce speed fluctuation, and ensure the stability and safety of the platoon. Finally, the entire process of interaction in a vehicle platoon was tested in a simulation environment. The results showed that, compared with the parameter adaptive control strategy, the maximum velocity overshoot of the platoon vehicles was reduced by 56%, recovery stabilization time was reduced by 47%, and vehicle jitter was reduced by 43%. The driving security and platoon stability were both within the control boundaries set for evaluation.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cooperative interaction strategy for vehicle platoons to obtain merging gaps in connected environments\",\"authors\":\"Hongyu Hu, Ming Cheng, Zhengyi Li, Zixuan Wang, Sheng Jin, Zhenhai Gao, Chuanliang Shen\",\"doi\":\"10.1177/09544070231220701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle platoons can significantly improve traffic throughput and reduce fuel consumption and emissions. In the formation of platoons, it is crucial to generate safe merging gaps. This process requires appropriate cooperative management and control strategies. This study proposes a cooperative interaction strategy for vehicle platoons, including a communication management system and vehicle control strategies. These strategies can reduce velocity fluctuation in the process of gap generation and improve traffic performance. First, a communication management system within a platoon was developed, according to the standard communication protocol (SAE J2735), ensuring that external vehicles can join the platoon efficiently and orderly. Next, a cooperative adaptive cruise control (CACC) system was designed, which adopts feedforward and feedback control. Furthermore, the influence of increasing gaps on the stability of the platoon was considered. A cooperative control strategy for a virtual guiding vehicle (VGV) was introduced to switch the following target and linearly change the distance input of the controller. In this way, the downstream vehicles were guided to smoothly generate a safe merging gap, which can reduce speed fluctuation, and ensure the stability and safety of the platoon. Finally, the entire process of interaction in a vehicle platoon was tested in a simulation environment. The results showed that, compared with the parameter adaptive control strategy, the maximum velocity overshoot of the platoon vehicles was reduced by 56%, recovery stabilization time was reduced by 47%, and vehicle jitter was reduced by 43%. The driving security and platoon stability were both within the control boundaries set for evaluation.\",\"PeriodicalId\":509770,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070231220701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070231220701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cooperative interaction strategy for vehicle platoons to obtain merging gaps in connected environments
Vehicle platoons can significantly improve traffic throughput and reduce fuel consumption and emissions. In the formation of platoons, it is crucial to generate safe merging gaps. This process requires appropriate cooperative management and control strategies. This study proposes a cooperative interaction strategy for vehicle platoons, including a communication management system and vehicle control strategies. These strategies can reduce velocity fluctuation in the process of gap generation and improve traffic performance. First, a communication management system within a platoon was developed, according to the standard communication protocol (SAE J2735), ensuring that external vehicles can join the platoon efficiently and orderly. Next, a cooperative adaptive cruise control (CACC) system was designed, which adopts feedforward and feedback control. Furthermore, the influence of increasing gaps on the stability of the platoon was considered. A cooperative control strategy for a virtual guiding vehicle (VGV) was introduced to switch the following target and linearly change the distance input of the controller. In this way, the downstream vehicles were guided to smoothly generate a safe merging gap, which can reduce speed fluctuation, and ensure the stability and safety of the platoon. Finally, the entire process of interaction in a vehicle platoon was tested in a simulation environment. The results showed that, compared with the parameter adaptive control strategy, the maximum velocity overshoot of the platoon vehicles was reduced by 56%, recovery stabilization time was reduced by 47%, and vehicle jitter was reduced by 43%. The driving security and platoon stability were both within the control boundaries set for evaluation.