微电子导线键合中铜铝金属间化合物的热错位和扩散诱导应力

Sharir Shariza, T. Anand
{"title":"微电子导线键合中铜铝金属间化合物的热错位和扩散诱导应力","authors":"Sharir Shariza, T. Anand","doi":"10.4028/p-bdlco4","DOIUrl":null,"url":null,"abstract":"The thermosonic bonding technique is a widely used method for Cu wire interconnections. However, issues arise due to volumetric changes in intermetallic compounds (IMCs) formed at the Cu-Al bonding interface, leading to voids in the Cu-Al IMC layer. This problem is exacerbated after annealing, such as in high-temperature Storage (HTS). In this study, a statistical modelling approach was employed to quantitatively analyse stress, studying the evolution and characteristics of the interfacial microstructure in the thermosonic Cu wire-Al bond pad system. Microstructural analysis focused on Cu-Al IMC crystallography and compositional classification. A stress model was proposed, considering both thermal misfit and diffusion-induced stresses. Results showed that interfacial stress generally increased with higher bonding temperatures. The influence of forming gas supply was relatively minor, with oxide layers minimally impeding Cu-Al interdiffusion during Cu-Al IMC formation. This stress modelling technique hold potential as a valuable failure analysis tool for implementing Cu wire in various industries.","PeriodicalId":508865,"journal":{"name":"Defect and Diffusion Forum","volume":"45 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Misfit and Diffusion Induced Stresses of Cu-Al Intermetallics in Microelectronics Wire Bonding\",\"authors\":\"Sharir Shariza, T. Anand\",\"doi\":\"10.4028/p-bdlco4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermosonic bonding technique is a widely used method for Cu wire interconnections. However, issues arise due to volumetric changes in intermetallic compounds (IMCs) formed at the Cu-Al bonding interface, leading to voids in the Cu-Al IMC layer. This problem is exacerbated after annealing, such as in high-temperature Storage (HTS). In this study, a statistical modelling approach was employed to quantitatively analyse stress, studying the evolution and characteristics of the interfacial microstructure in the thermosonic Cu wire-Al bond pad system. Microstructural analysis focused on Cu-Al IMC crystallography and compositional classification. A stress model was proposed, considering both thermal misfit and diffusion-induced stresses. Results showed that interfacial stress generally increased with higher bonding temperatures. The influence of forming gas supply was relatively minor, with oxide layers minimally impeding Cu-Al interdiffusion during Cu-Al IMC formation. This stress modelling technique hold potential as a valuable failure analysis tool for implementing Cu wire in various industries.\",\"PeriodicalId\":508865,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-bdlco4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-bdlco4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热固性键合技术是一种广泛用于铜线互连的方法。然而,由于铜铝键合界面上形成的金属间化合物(IMC)的体积变化,导致铜铝 IMC 层出现空隙,从而产生了一些问题。退火后,例如在高温存储 (HTS) 中,这一问题会更加严重。本研究采用统计建模方法对应力进行定量分析,研究热声铜线-铝键合垫系统中界面微结构的演变和特征。微观结构分析侧重于铜-铝 IMC 晶体学和成分分类。考虑到热错位和扩散引起的应力,提出了一个应力模型。结果表明,界面应力通常随着粘合温度的升高而增加。成型气体供应的影响相对较小,在铜铝 IMC 形成过程中,氧化层对铜铝相互扩散的阻碍很小。这种应力建模技术可作为一种有价值的失效分析工具,应用于各行各业的铜线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Misfit and Diffusion Induced Stresses of Cu-Al Intermetallics in Microelectronics Wire Bonding
The thermosonic bonding technique is a widely used method for Cu wire interconnections. However, issues arise due to volumetric changes in intermetallic compounds (IMCs) formed at the Cu-Al bonding interface, leading to voids in the Cu-Al IMC layer. This problem is exacerbated after annealing, such as in high-temperature Storage (HTS). In this study, a statistical modelling approach was employed to quantitatively analyse stress, studying the evolution and characteristics of the interfacial microstructure in the thermosonic Cu wire-Al bond pad system. Microstructural analysis focused on Cu-Al IMC crystallography and compositional classification. A stress model was proposed, considering both thermal misfit and diffusion-induced stresses. Results showed that interfacial stress generally increased with higher bonding temperatures. The influence of forming gas supply was relatively minor, with oxide layers minimally impeding Cu-Al interdiffusion during Cu-Al IMC formation. This stress modelling technique hold potential as a valuable failure analysis tool for implementing Cu wire in various industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信