智慧城市背景下的开放式创新:世宗智慧城市倡议案例

Junghee Han
{"title":"智慧城市背景下的开放式创新:世宗智慧城市倡议案例","authors":"Junghee Han","doi":"10.1108/ejim-07-2023-0600","DOIUrl":null,"url":null,"abstract":"PurposeQuite often than not, a new industry can be created, thanks to the countless entrepreneurs and innovative activities across the globe. Smart city (SC) is one such industry and a living lab using the key roles of the digital platform that enable a seamless flow of information and knowledge for innovation within the SC. The purpose of this paper is to illustrate how SC can be a new regional industry engine through an “open collective innovation system” as its new concept. In particular, SC provides efficient transaction costs and knowledge flows. Eventually, SC can be an innovation hub for entrepreneurship through openness.Design/methodology/approachTo frame the research goals, the authors used qualitative research methodologies based on grounded theory. In particular, the author used inductive reasoning to generate arguments and conclusions about the future of an SC as a new growth engine in the era of the fourth industrial revolution. Numerous documents and prior literature were used for the preliminary conceptualization of an SC. Interview data were then coded for reasoning in an open collective innovation system based on “openness”.FindingsSC maximizes efficiency in practicing innovation. In the perspective of innovation costs, SC can minimize transaction costs, specifically the information processing costs, through data openness. In this context, transaction costs can be considered an economic equivalent of friction in a physical system. So, as the friction is low, some movements of an object on the surface are likely to be easy. SC is optimized for innovation activities through an “open collective innovation system”. In terms of innovation networks, an SC results in an innovation efficiency derived from both the network and the spatial agglomerations in physical and cyberspace. The efficiency-based SC itself overlaps knowledge creation, dissemination and absorption, providing an open innovation (OI) ecosystem.Research limitations/implicationsThis paper remarkably extends that SC can be an “open collective innovation system model” and a new conceptualization. Eventually, SC will play a crucial role in developing regional industries as a new growth engine. To operate as a new growth engine fully-fledged, the SC is needed to accumulate innovative assets such as the critical mass of residents, numerous firms, etc. However, this study has some limitations. First, difficulties in any analytic approach to SC resulted from their many interdependent facets, such as social, economic, infrastructural and spatial complex systems, which exist in similar but changing forms over a huge range of scales. Also, this research is at a quite an early stage. Thus, its theoretical stability is weak. So, this paper used the qualitative methodology with a grounded theory. Another limitation is in the research methodology. The limitation of using grounded theory adapted by this work is that the results of this study may not be generalizable beyond the context of this study. This non-generalizability occurs because ours is an inductive approach to research, meaning that the findings are based on data collected and analyzed. As such, the results of this study may not be applicable to other contexts or situations. In addition, the analysis of data in the grounded theory is based on researcher’s subjective interpretations. This means that the researcher’s own biases, preferences and assumptions may influence the results of the study. The quality of the data collected is another potential limitation. If the data is incomplete or of poor quality, it can cause researcher’s own subjective interpretations.Practical implicationsFindings of this study have some practical implications for enterprises, practitioners and governors. First, firms should use value networks instead of value chains. Notably, the firms that pursue new products or services or startups that try to find a new venture business should take full advantage of SC. This taking advantage is possible because SC not only adapts state-of-the-art information technology (e.g. sensor devices, open data analytics, IoT and fiber optic networks) but also facilitates knowledge flow (e.g. between universities, research centers, knowledge-based partner firms and public agencies). More importantly, with globalized market competition in recent years, sustainability for firms is a challenging issue. In this respect, managers can take the benefits of SC into consideration for strategic decisions for sustainability. Specifically, industrial practitioners who engage in innovation activities have capabilities of network-related technologies (e.g. data analysis, AI, IoT and sensor networks). By using these technologies in an SC, enterprises can keep existing customers as well as attract potential customers. Lastly, the findings of this study contribute to policy implementation in many aspects. At first, for SC to become a growth engine at regional or natural levels, strong policy implementation is crucial because SC is widely regarded as a means of entrepreneurship and an innovation plaza (Kraus et al., 2015). To facilitate entrepreneurship, maker spaces used for making the prototypes to support entrepreneurial process were setup within universities. The reason for establishing maker spaces in universities is to expand networking between entrepreneurs and experts and lead to innovation through a value network. One of the policy instruments that can be adapted is the “Data Basic Income Scheme” suggested by this research to boost the usage of data, providing content and information for doing business. Also, a governor in SC as an intermediator for the process of the knowledge flow should initiate soft configuration for SC.Social implicationsThis work makes two theoretical contributions to OI aspects: (1) it explores dynamic model archetypes; and (2) it articulates and highlights how SC with digital technology (i.e. in the AI, IoT and big data context) can be used to create collective knowledge flow efficiently. First, the findings of this study shed light on the OI dynamic model. It reveals important archetypes of new sub-clustering creation, namely, a system that underpins the holistic process of innovation by categorization in amongst the participating value network (Aguilar-Gallegos et al., 2015). In innovation studies, scholars have particularly paid attention to a cluster’s evolution model. In the process of innovation, the “open innovation dynamic model” suggested by this study illustrates sub-clustering that happens in value networks by taking the benefits of SC. Eventually, the evolution or development of sub-clusters can bring in a new system, namely, an OI system. Second, the findings of this study contribute to the understanding of the role of digital technologies in promoting knowledge flow. The usage and deployment of digital technologies in SC may enormously and positively influence innovative activities for participants. Furthermore, the rising of digital economy, in the so-called platform business, may occur depending on advanced technologies and OI. In doing so, the findings can further tow innovation research through juxtaposition between SC and innovation research (Mehra et al., 2021).Originality/valueThis paper shows that the function of an SC not only improves the quality of life but also acts as an engine of new industry through an open collective innovation setting using dynamic and ecological models.","PeriodicalId":504522,"journal":{"name":"European Journal of Innovation Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open innovation in a smart city context: the case of Sejong smart city initiative\",\"authors\":\"Junghee Han\",\"doi\":\"10.1108/ejim-07-2023-0600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeQuite often than not, a new industry can be created, thanks to the countless entrepreneurs and innovative activities across the globe. Smart city (SC) is one such industry and a living lab using the key roles of the digital platform that enable a seamless flow of information and knowledge for innovation within the SC. The purpose of this paper is to illustrate how SC can be a new regional industry engine through an “open collective innovation system” as its new concept. In particular, SC provides efficient transaction costs and knowledge flows. Eventually, SC can be an innovation hub for entrepreneurship through openness.Design/methodology/approachTo frame the research goals, the authors used qualitative research methodologies based on grounded theory. In particular, the author used inductive reasoning to generate arguments and conclusions about the future of an SC as a new growth engine in the era of the fourth industrial revolution. Numerous documents and prior literature were used for the preliminary conceptualization of an SC. Interview data were then coded for reasoning in an open collective innovation system based on “openness”.FindingsSC maximizes efficiency in practicing innovation. In the perspective of innovation costs, SC can minimize transaction costs, specifically the information processing costs, through data openness. In this context, transaction costs can be considered an economic equivalent of friction in a physical system. So, as the friction is low, some movements of an object on the surface are likely to be easy. SC is optimized for innovation activities through an “open collective innovation system”. In terms of innovation networks, an SC results in an innovation efficiency derived from both the network and the spatial agglomerations in physical and cyberspace. The efficiency-based SC itself overlaps knowledge creation, dissemination and absorption, providing an open innovation (OI) ecosystem.Research limitations/implicationsThis paper remarkably extends that SC can be an “open collective innovation system model” and a new conceptualization. Eventually, SC will play a crucial role in developing regional industries as a new growth engine. To operate as a new growth engine fully-fledged, the SC is needed to accumulate innovative assets such as the critical mass of residents, numerous firms, etc. However, this study has some limitations. First, difficulties in any analytic approach to SC resulted from their many interdependent facets, such as social, economic, infrastructural and spatial complex systems, which exist in similar but changing forms over a huge range of scales. Also, this research is at a quite an early stage. Thus, its theoretical stability is weak. So, this paper used the qualitative methodology with a grounded theory. Another limitation is in the research methodology. The limitation of using grounded theory adapted by this work is that the results of this study may not be generalizable beyond the context of this study. This non-generalizability occurs because ours is an inductive approach to research, meaning that the findings are based on data collected and analyzed. As such, the results of this study may not be applicable to other contexts or situations. In addition, the analysis of data in the grounded theory is based on researcher’s subjective interpretations. This means that the researcher’s own biases, preferences and assumptions may influence the results of the study. The quality of the data collected is another potential limitation. If the data is incomplete or of poor quality, it can cause researcher’s own subjective interpretations.Practical implicationsFindings of this study have some practical implications for enterprises, practitioners and governors. First, firms should use value networks instead of value chains. Notably, the firms that pursue new products or services or startups that try to find a new venture business should take full advantage of SC. This taking advantage is possible because SC not only adapts state-of-the-art information technology (e.g. sensor devices, open data analytics, IoT and fiber optic networks) but also facilitates knowledge flow (e.g. between universities, research centers, knowledge-based partner firms and public agencies). More importantly, with globalized market competition in recent years, sustainability for firms is a challenging issue. In this respect, managers can take the benefits of SC into consideration for strategic decisions for sustainability. Specifically, industrial practitioners who engage in innovation activities have capabilities of network-related technologies (e.g. data analysis, AI, IoT and sensor networks). By using these technologies in an SC, enterprises can keep existing customers as well as attract potential customers. Lastly, the findings of this study contribute to policy implementation in many aspects. At first, for SC to become a growth engine at regional or natural levels, strong policy implementation is crucial because SC is widely regarded as a means of entrepreneurship and an innovation plaza (Kraus et al., 2015). To facilitate entrepreneurship, maker spaces used for making the prototypes to support entrepreneurial process were setup within universities. The reason for establishing maker spaces in universities is to expand networking between entrepreneurs and experts and lead to innovation through a value network. One of the policy instruments that can be adapted is the “Data Basic Income Scheme” suggested by this research to boost the usage of data, providing content and information for doing business. Also, a governor in SC as an intermediator for the process of the knowledge flow should initiate soft configuration for SC.Social implicationsThis work makes two theoretical contributions to OI aspects: (1) it explores dynamic model archetypes; and (2) it articulates and highlights how SC with digital technology (i.e. in the AI, IoT and big data context) can be used to create collective knowledge flow efficiently. First, the findings of this study shed light on the OI dynamic model. It reveals important archetypes of new sub-clustering creation, namely, a system that underpins the holistic process of innovation by categorization in amongst the participating value network (Aguilar-Gallegos et al., 2015). In innovation studies, scholars have particularly paid attention to a cluster’s evolution model. In the process of innovation, the “open innovation dynamic model” suggested by this study illustrates sub-clustering that happens in value networks by taking the benefits of SC. Eventually, the evolution or development of sub-clusters can bring in a new system, namely, an OI system. Second, the findings of this study contribute to the understanding of the role of digital technologies in promoting knowledge flow. The usage and deployment of digital technologies in SC may enormously and positively influence innovative activities for participants. Furthermore, the rising of digital economy, in the so-called platform business, may occur depending on advanced technologies and OI. In doing so, the findings can further tow innovation research through juxtaposition between SC and innovation research (Mehra et al., 2021).Originality/valueThis paper shows that the function of an SC not only improves the quality of life but also acts as an engine of new industry through an open collective innovation setting using dynamic and ecological models.\",\"PeriodicalId\":504522,\"journal\":{\"name\":\"European Journal of Innovation Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Innovation Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ejim-07-2023-0600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Innovation Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ejim-07-2023-0600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先,要使自然科学成为区域或自然层面的增长引擎,强有力的政策实施至关重要,因为自然科学被广泛视为创业手段和创新广场(Kraus 等人,2015 年)。为促进创业,在大学内设立了用于制作原型的创客空间,以支持创业过程。在大学建立创客空间的原因是扩大创业者与专家之间的网络,通过价值网络实现创新。本研究提出的 "数据基本收入计划 "是可以借鉴的政策工具之一,该计划旨在促进数据的使用,为商业活动提供内容和信息。此外,作为知识流动过程中介的自然科学治理者应启动自然科学的软配置。 本研究在开放式创新方面做出了两项理论贡献:(1)探索了动态模型原型;(2)阐明并强调了如何利用数字技术(即在人工智能、物联网和大数据背景下)创建高效的集体知识流动。首先,本研究的结果揭示了 OI 动态模型。它揭示了新的子集群创建的重要原型,即通过在参与的价值网络中进行分类来支撑整体创新过程的系统(Aguilar-Gallegos 等人,2015 年)。在创新研究中,学者们尤其关注集群的演化模式。在创新过程中,本研究提出的 "开放式创新动态模型 "说明了价值网络中通过利用 SC 的优势而发生的子集群。最终,子集群的演变或发展会带来一个新的系统,即开放式创新系统。其次,这项研究的结果有助于人们理解数字技术在促进知识流动方面的作用。在 SC 中使用和部署数字技术可能会对参与者的创新活动产生巨大的积极影响。此外,数字经济(即所谓的平台业务)的崛起可能取决于先进技术和开放式创新。因此,研究结果可以通过将 SC 与创新研究并列,进一步推动创新研究(Mehra et al.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open innovation in a smart city context: the case of Sejong smart city initiative
PurposeQuite often than not, a new industry can be created, thanks to the countless entrepreneurs and innovative activities across the globe. Smart city (SC) is one such industry and a living lab using the key roles of the digital platform that enable a seamless flow of information and knowledge for innovation within the SC. The purpose of this paper is to illustrate how SC can be a new regional industry engine through an “open collective innovation system” as its new concept. In particular, SC provides efficient transaction costs and knowledge flows. Eventually, SC can be an innovation hub for entrepreneurship through openness.Design/methodology/approachTo frame the research goals, the authors used qualitative research methodologies based on grounded theory. In particular, the author used inductive reasoning to generate arguments and conclusions about the future of an SC as a new growth engine in the era of the fourth industrial revolution. Numerous documents and prior literature were used for the preliminary conceptualization of an SC. Interview data were then coded for reasoning in an open collective innovation system based on “openness”.FindingsSC maximizes efficiency in practicing innovation. In the perspective of innovation costs, SC can minimize transaction costs, specifically the information processing costs, through data openness. In this context, transaction costs can be considered an economic equivalent of friction in a physical system. So, as the friction is low, some movements of an object on the surface are likely to be easy. SC is optimized for innovation activities through an “open collective innovation system”. In terms of innovation networks, an SC results in an innovation efficiency derived from both the network and the spatial agglomerations in physical and cyberspace. The efficiency-based SC itself overlaps knowledge creation, dissemination and absorption, providing an open innovation (OI) ecosystem.Research limitations/implicationsThis paper remarkably extends that SC can be an “open collective innovation system model” and a new conceptualization. Eventually, SC will play a crucial role in developing regional industries as a new growth engine. To operate as a new growth engine fully-fledged, the SC is needed to accumulate innovative assets such as the critical mass of residents, numerous firms, etc. However, this study has some limitations. First, difficulties in any analytic approach to SC resulted from their many interdependent facets, such as social, economic, infrastructural and spatial complex systems, which exist in similar but changing forms over a huge range of scales. Also, this research is at a quite an early stage. Thus, its theoretical stability is weak. So, this paper used the qualitative methodology with a grounded theory. Another limitation is in the research methodology. The limitation of using grounded theory adapted by this work is that the results of this study may not be generalizable beyond the context of this study. This non-generalizability occurs because ours is an inductive approach to research, meaning that the findings are based on data collected and analyzed. As such, the results of this study may not be applicable to other contexts or situations. In addition, the analysis of data in the grounded theory is based on researcher’s subjective interpretations. This means that the researcher’s own biases, preferences and assumptions may influence the results of the study. The quality of the data collected is another potential limitation. If the data is incomplete or of poor quality, it can cause researcher’s own subjective interpretations.Practical implicationsFindings of this study have some practical implications for enterprises, practitioners and governors. First, firms should use value networks instead of value chains. Notably, the firms that pursue new products or services or startups that try to find a new venture business should take full advantage of SC. This taking advantage is possible because SC not only adapts state-of-the-art information technology (e.g. sensor devices, open data analytics, IoT and fiber optic networks) but also facilitates knowledge flow (e.g. between universities, research centers, knowledge-based partner firms and public agencies). More importantly, with globalized market competition in recent years, sustainability for firms is a challenging issue. In this respect, managers can take the benefits of SC into consideration for strategic decisions for sustainability. Specifically, industrial practitioners who engage in innovation activities have capabilities of network-related technologies (e.g. data analysis, AI, IoT and sensor networks). By using these technologies in an SC, enterprises can keep existing customers as well as attract potential customers. Lastly, the findings of this study contribute to policy implementation in many aspects. At first, for SC to become a growth engine at regional or natural levels, strong policy implementation is crucial because SC is widely regarded as a means of entrepreneurship and an innovation plaza (Kraus et al., 2015). To facilitate entrepreneurship, maker spaces used for making the prototypes to support entrepreneurial process were setup within universities. The reason for establishing maker spaces in universities is to expand networking between entrepreneurs and experts and lead to innovation through a value network. One of the policy instruments that can be adapted is the “Data Basic Income Scheme” suggested by this research to boost the usage of data, providing content and information for doing business. Also, a governor in SC as an intermediator for the process of the knowledge flow should initiate soft configuration for SC.Social implicationsThis work makes two theoretical contributions to OI aspects: (1) it explores dynamic model archetypes; and (2) it articulates and highlights how SC with digital technology (i.e. in the AI, IoT and big data context) can be used to create collective knowledge flow efficiently. First, the findings of this study shed light on the OI dynamic model. It reveals important archetypes of new sub-clustering creation, namely, a system that underpins the holistic process of innovation by categorization in amongst the participating value network (Aguilar-Gallegos et al., 2015). In innovation studies, scholars have particularly paid attention to a cluster’s evolution model. In the process of innovation, the “open innovation dynamic model” suggested by this study illustrates sub-clustering that happens in value networks by taking the benefits of SC. Eventually, the evolution or development of sub-clusters can bring in a new system, namely, an OI system. Second, the findings of this study contribute to the understanding of the role of digital technologies in promoting knowledge flow. The usage and deployment of digital technologies in SC may enormously and positively influence innovative activities for participants. Furthermore, the rising of digital economy, in the so-called platform business, may occur depending on advanced technologies and OI. In doing so, the findings can further tow innovation research through juxtaposition between SC and innovation research (Mehra et al., 2021).Originality/valueThis paper shows that the function of an SC not only improves the quality of life but also acts as an engine of new industry through an open collective innovation setting using dynamic and ecological models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信