某些时分数非线性微分方程的游波解法

Mustafa Ekici
{"title":"某些时分数非线性微分方程的游波解法","authors":"Mustafa Ekici","doi":"10.34248/bsengineering.1413250","DOIUrl":null,"url":null,"abstract":"The study employs the potent generalized Kudryashov method to address challenges posed by fractional differential equations in mathematical physics. The primary focus is on deriving new exact solutions for three significant equations: the (3+1)-dimensional time fractional Jimbo-Miwa equation, the (3+1)-dimensional time fractional modified KdV-Zakharov-Kuznetsov equation and the (2+1)-dimensional time fractional Drinfeld-Sokolov-Satsuma-Hirota equation. The versatility and efficacy of the Kudryashov method in addressing complex nonlinear problems establish it as a pivotal component in our research. Specifically, we delineate fractional derivatives within the framework of the conformable fractional derivative, thereby laying a robust foundation for our mathematical inquiries. This paper investigates the efficacy of the generalized Kudryashov method in addressing the intricate challenges posed by fractional differential equations.","PeriodicalId":495872,"journal":{"name":"Black sea journal of engineering and science","volume":"18 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Travelling Wave Solutions for Some Time-Fractional Nonlinear Differential Equations\",\"authors\":\"Mustafa Ekici\",\"doi\":\"10.34248/bsengineering.1413250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study employs the potent generalized Kudryashov method to address challenges posed by fractional differential equations in mathematical physics. The primary focus is on deriving new exact solutions for three significant equations: the (3+1)-dimensional time fractional Jimbo-Miwa equation, the (3+1)-dimensional time fractional modified KdV-Zakharov-Kuznetsov equation and the (2+1)-dimensional time fractional Drinfeld-Sokolov-Satsuma-Hirota equation. The versatility and efficacy of the Kudryashov method in addressing complex nonlinear problems establish it as a pivotal component in our research. Specifically, we delineate fractional derivatives within the framework of the conformable fractional derivative, thereby laying a robust foundation for our mathematical inquiries. This paper investigates the efficacy of the generalized Kudryashov method in addressing the intricate challenges posed by fractional differential equations.\",\"PeriodicalId\":495872,\"journal\":{\"name\":\"Black sea journal of engineering and science\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Black sea journal of engineering and science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.34248/bsengineering.1413250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Black sea journal of engineering and science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.34248/bsengineering.1413250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究采用了强大的广义库德亚绍夫方法来解决数学物理中分式微分方程带来的挑战。主要重点是推导三个重要方程的新精确解:(3+1)维时间分数 Jimbo-Miwa 方程、(3+1)维时间分数修正 KdV-Zakharov-Kuznetsov 方程和(2+1)维时间分数 Drinfeld-Sokolov-Satsuma-Hirota 方程。库德亚绍夫方法在解决复杂非线性问题方面的多功能性和高效性使其成为我们研究的关键组成部分。具体而言,我们在共形分式导数的框架内划分了分式导数,从而为我们的数学探索奠定了坚实的基础。本文研究了广义库德里亚肖夫方法在解决分数微分方程带来的复杂挑战方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Travelling Wave Solutions for Some Time-Fractional Nonlinear Differential Equations
The study employs the potent generalized Kudryashov method to address challenges posed by fractional differential equations in mathematical physics. The primary focus is on deriving new exact solutions for three significant equations: the (3+1)-dimensional time fractional Jimbo-Miwa equation, the (3+1)-dimensional time fractional modified KdV-Zakharov-Kuznetsov equation and the (2+1)-dimensional time fractional Drinfeld-Sokolov-Satsuma-Hirota equation. The versatility and efficacy of the Kudryashov method in addressing complex nonlinear problems establish it as a pivotal component in our research. Specifically, we delineate fractional derivatives within the framework of the conformable fractional derivative, thereby laying a robust foundation for our mathematical inquiries. This paper investigates the efficacy of the generalized Kudryashov method in addressing the intricate challenges posed by fractional differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信