Wedyan G. Nassif, Ahmed A. Hashim, Sara Muter, Osama T. Al-Taai
{"title":"伊拉克上空风与表面粗糙度和二氧化碳浓度之间的关系","authors":"Wedyan G. Nassif, Ahmed A. Hashim, Sara Muter, Osama T. Al-Taai","doi":"10.3233/ajw240012","DOIUrl":null,"url":null,"abstract":"The methodology used in the study is based on hourly and monthly rates (wind speed and direction, CO2, and surface roughness) obtained from the European Center for Numerical Weather Prediction at 30 sites in Iraq in 2020. The results showed that the maximum wind speed was 4 m/s at 12:00 noon, while the prevailing wind direction for all sites in Iraq was towards the northwest (NW) and the minimum wind speed was 2 m/s at 00:00 AM. By analysing the monthly wind speed and direction for some selected stations, it was found that the highest value of (SW), i.e., 64% was recorded at Rutba station, and the lowest value of (SW) at Basra station was 45%, where the prevailing direction was found to be towards the north-northwest (NNW). The spatial analysis concluded that the wind movement is directed from the north and northwest, explaining that the wind reverses its direction from the mountainous heights to flat lands due to the roughness of the surface in the northern regions above the stations of Iraq. Spearman’s test was carried out between wind speed and surface roughness, and between carbon dioxide and surface roughness. It was found that the correlation strength is weak, and the relationship is inverse between surface roughness and wind speed. This analysis is considered the best way to choose the best wind power plants.","PeriodicalId":8553,"journal":{"name":"Asian Journal of Water, Environment and Pollution","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Between Winds with Surface Roughness and Carbon Dioxide Concentrations Over Iraq\",\"authors\":\"Wedyan G. Nassif, Ahmed A. Hashim, Sara Muter, Osama T. Al-Taai\",\"doi\":\"10.3233/ajw240012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methodology used in the study is based on hourly and monthly rates (wind speed and direction, CO2, and surface roughness) obtained from the European Center for Numerical Weather Prediction at 30 sites in Iraq in 2020. The results showed that the maximum wind speed was 4 m/s at 12:00 noon, while the prevailing wind direction for all sites in Iraq was towards the northwest (NW) and the minimum wind speed was 2 m/s at 00:00 AM. By analysing the monthly wind speed and direction for some selected stations, it was found that the highest value of (SW), i.e., 64% was recorded at Rutba station, and the lowest value of (SW) at Basra station was 45%, where the prevailing direction was found to be towards the north-northwest (NNW). The spatial analysis concluded that the wind movement is directed from the north and northwest, explaining that the wind reverses its direction from the mountainous heights to flat lands due to the roughness of the surface in the northern regions above the stations of Iraq. Spearman’s test was carried out between wind speed and surface roughness, and between carbon dioxide and surface roughness. It was found that the correlation strength is weak, and the relationship is inverse between surface roughness and wind speed. This analysis is considered the best way to choose the best wind power plants.\",\"PeriodicalId\":8553,\"journal\":{\"name\":\"Asian Journal of Water, Environment and Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Water, Environment and Pollution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ajw240012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Water, Environment and Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ajw240012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Relationship Between Winds with Surface Roughness and Carbon Dioxide Concentrations Over Iraq
The methodology used in the study is based on hourly and monthly rates (wind speed and direction, CO2, and surface roughness) obtained from the European Center for Numerical Weather Prediction at 30 sites in Iraq in 2020. The results showed that the maximum wind speed was 4 m/s at 12:00 noon, while the prevailing wind direction for all sites in Iraq was towards the northwest (NW) and the minimum wind speed was 2 m/s at 00:00 AM. By analysing the monthly wind speed and direction for some selected stations, it was found that the highest value of (SW), i.e., 64% was recorded at Rutba station, and the lowest value of (SW) at Basra station was 45%, where the prevailing direction was found to be towards the north-northwest (NNW). The spatial analysis concluded that the wind movement is directed from the north and northwest, explaining that the wind reverses its direction from the mountainous heights to flat lands due to the roughness of the surface in the northern regions above the stations of Iraq. Spearman’s test was carried out between wind speed and surface roughness, and between carbon dioxide and surface roughness. It was found that the correlation strength is weak, and the relationship is inverse between surface roughness and wind speed. This analysis is considered the best way to choose the best wind power plants.
期刊介绍:
Asia, as a whole region, faces severe stress on water availability, primarily due to high population density. Many regions of the continent face severe problems of water pollution on local as well as regional scale and these have to be tackled with a pan-Asian approach. However, the available literature on the subject is generally based on research done in Europe and North America. Therefore, there is an urgent and strong need for an Asian journal with its focus on the region and wherein the region specific problems are addressed in an intelligent manner. In Asia, besides water, there are several other issues related to environment, such as; global warming and its impact; intense land/use and shifting pattern of agriculture; issues related to fertilizer applications and pesticide residues in soil and water; and solid and liquid waste management particularly in industrial and urban areas. Asia is also a region with intense mining activities whereby serious environmental problems related to land/use, loss of top soil, water pollution and acid mine drainage are faced by various communities. Essentially, Asians are confronted with environmental problems on many fronts. Many pressing issues in the region interlink various aspects of environmental problems faced by population in this densely habited region in the world. Pollution is one such serious issue for many countries since there are many transnational water bodies that spread the pollutants across the entire region. Water, environment and pollution together constitute a three axial problem that all concerned people in the region would like to focus on.