不连续非线性双谐波方程

Pub Date : 2024-02-06 DOI:10.58997/ejde.2024.15
Eduardo Arias, Marco Calahorrano, Alfonso Castro
{"title":"不连续非线性双谐波方程","authors":"Eduardo Arias, Marco Calahorrano, Alfonso Castro","doi":"10.58997/ejde.2024.15","DOIUrl":null,"url":null,"abstract":"We study the biharmonic equation with discontinuous nonlinearity and homogeneous Dirichlet type boundary conditions $$\\displaylines{ \\Delta^2u=H(u-a)q(u) \\quad \\hbox{in }\\Omega,\\cr u=0 \\quad \\hbox{on }\\partial\\Omega,\\cr \\frac{\\partial u}{\\partial n}=0 \\quad \\hbox{on }\\partial\\Omega, }$$ where \\(\\Delta\\) is the Laplace operator, \\(a> 0\\), \\(H\\) denotes the Heaviside function, \\(q\\) is a continuous function, and \\(\\Omega\\) is a domain in \\(R^N \\) with \\(N\\geq 3\\). Adapting the method introduced by Ambrosetti and Badiale (The Dual Variational Principle), which is a modification of Clarke and Ekeland's Dual Action Principle, we prove the existence of nontrivial solutions. This method provides a differentiable functional whose critical points yield solutions despite the discontinuity of \\(H(s-a)q(s)\\) at \\(s=a\\). Considering \\(\\Omega\\) of class \\(\\mathcal{C}^{4,\\gamma}\\) for some \\(\\gamma\\in(0,1)\\), and the function \\(q\\) constrained under certain conditions, we show the existence of two non-trivial solutions. Furthermore, we prove that the free boundary set \\(\\Omega_a=\\{x\\in\\Omega:u(x)=a\\}\\) for the solution obtained through the minimizer has measure zero.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/15/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"biharmonic equation with discontinuous nonlinearities\",\"authors\":\"Eduardo Arias, Marco Calahorrano, Alfonso Castro\",\"doi\":\"10.58997/ejde.2024.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the biharmonic equation with discontinuous nonlinearity and homogeneous Dirichlet type boundary conditions $$\\\\displaylines{ \\\\Delta^2u=H(u-a)q(u) \\\\quad \\\\hbox{in }\\\\Omega,\\\\cr u=0 \\\\quad \\\\hbox{on }\\\\partial\\\\Omega,\\\\cr \\\\frac{\\\\partial u}{\\\\partial n}=0 \\\\quad \\\\hbox{on }\\\\partial\\\\Omega, }$$ where \\\\(\\\\Delta\\\\) is the Laplace operator, \\\\(a> 0\\\\), \\\\(H\\\\) denotes the Heaviside function, \\\\(q\\\\) is a continuous function, and \\\\(\\\\Omega\\\\) is a domain in \\\\(R^N \\\\) with \\\\(N\\\\geq 3\\\\). Adapting the method introduced by Ambrosetti and Badiale (The Dual Variational Principle), which is a modification of Clarke and Ekeland's Dual Action Principle, we prove the existence of nontrivial solutions. This method provides a differentiable functional whose critical points yield solutions despite the discontinuity of \\\\(H(s-a)q(s)\\\\) at \\\\(s=a\\\\). Considering \\\\(\\\\Omega\\\\) of class \\\\(\\\\mathcal{C}^{4,\\\\gamma}\\\\) for some \\\\(\\\\gamma\\\\in(0,1)\\\\), and the function \\\\(q\\\\) constrained under certain conditions, we show the existence of two non-trivial solutions. Furthermore, we prove that the free boundary set \\\\(\\\\Omega_a=\\\\{x\\\\in\\\\Omega:u(x)=a\\\\}\\\\) for the solution obtained through the minimizer has measure zero.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/15/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有不连续非线性和同质 Dirichlet 型边界条件的双谐波方程 $$\displaylines{ \Delta^2u=H(u-a)q(u) \quad \hbox{in }\Omega,\cr u=0 \quad \hbox{on }\partial\Omega、\其中 \(\Delta\) 是拉普拉斯算子, \(a> 0\), \(H\) 表示 Heaviside 函数, \(q\) 是连续函数,并且 \(\Omega\) 是 \(R^N\) 中的一个域,带有 \(N\geq 3\).安布罗塞蒂和巴迪亚莱引入的方法(双重变量原理)是对克拉克和埃克兰德的双重作用原理的修正,我们采用这种方法证明了非微分解的存在性。这种方法提供了一个可微分函数,尽管 \(H(s-a)q(s)\) 在 \(s=a\) 处不连续,但其临界点仍会产生解。考虑到\(Omega\) of class \(\mathcal{C}^{4,\gamma}\) for some \(\gamma\in(0,1)\), 以及函数\(q\) constrained under certain conditions,我们证明了两个非难解的存在。此外,我们证明了通过最小化得到的解的自由边界集合(\Omega_a=\{x\in\Omega:u(x)=a\}\)的度量为零。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/15/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
biharmonic equation with discontinuous nonlinearities
We study the biharmonic equation with discontinuous nonlinearity and homogeneous Dirichlet type boundary conditions $$\displaylines{ \Delta^2u=H(u-a)q(u) \quad \hbox{in }\Omega,\cr u=0 \quad \hbox{on }\partial\Omega,\cr \frac{\partial u}{\partial n}=0 \quad \hbox{on }\partial\Omega, }$$ where \(\Delta\) is the Laplace operator, \(a> 0\), \(H\) denotes the Heaviside function, \(q\) is a continuous function, and \(\Omega\) is a domain in \(R^N \) with \(N\geq 3\). Adapting the method introduced by Ambrosetti and Badiale (The Dual Variational Principle), which is a modification of Clarke and Ekeland's Dual Action Principle, we prove the existence of nontrivial solutions. This method provides a differentiable functional whose critical points yield solutions despite the discontinuity of \(H(s-a)q(s)\) at \(s=a\). Considering \(\Omega\) of class \(\mathcal{C}^{4,\gamma}\) for some \(\gamma\in(0,1)\), and the function \(q\) constrained under certain conditions, we show the existence of two non-trivial solutions. Furthermore, we prove that the free boundary set \(\Omega_a=\{x\in\Omega:u(x)=a\}\) for the solution obtained through the minimizer has measure zero. For more information see https://ejde.math.txstate.edu/Volumes/2024/15/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信