确定 k 次自然数幂之和的新方法

V.R. Kalyan Kumar, R. Sivaraman
{"title":"确定 k 次自然数幂之和的新方法","authors":"V.R. Kalyan Kumar, R. Sivaraman","doi":"10.29121/granthaalayah.v12.i1.2024.5491","DOIUrl":null,"url":null,"abstract":"Since ancient times, mathematicians across the world have worked on different methods to find the sum of powers of natural numbers. In this paper, we are going to present the relationship between sum of kth powers of natural numbers and sum of (k–1) th powers of natural numbers using the differential operator and associated recurrence relation. Interestingly, the Bernoulli numbers which occur frequently in mathematical analysis, play an important role in establishing this relationship.","PeriodicalId":508420,"journal":{"name":"International Journal of Research -GRANTHAALAYAH","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOVEL WAY OF DETERMINING SUM OF KTH POWERS OF NATURAL NUMBERS\",\"authors\":\"V.R. Kalyan Kumar, R. Sivaraman\",\"doi\":\"10.29121/granthaalayah.v12.i1.2024.5491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since ancient times, mathematicians across the world have worked on different methods to find the sum of powers of natural numbers. In this paper, we are going to present the relationship between sum of kth powers of natural numbers and sum of (k–1) th powers of natural numbers using the differential operator and associated recurrence relation. Interestingly, the Bernoulli numbers which occur frequently in mathematical analysis, play an important role in establishing this relationship.\",\"PeriodicalId\":508420,\"journal\":{\"name\":\"International Journal of Research -GRANTHAALAYAH\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Research -GRANTHAALAYAH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29121/granthaalayah.v12.i1.2024.5491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research -GRANTHAALAYAH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/granthaalayah.v12.i1.2024.5491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自古以来,世界各地的数学家都在研究不同的方法来求自然数的幂级数之和。本文将利用微分算子和相关的递推关系,介绍自然数 k 次幂之和与自然数 (k-1) 次幂之和之间的关系。有趣的是,在数学分析中经常出现的伯努利数在建立这种关系中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NOVEL WAY OF DETERMINING SUM OF KTH POWERS OF NATURAL NUMBERS
Since ancient times, mathematicians across the world have worked on different methods to find the sum of powers of natural numbers. In this paper, we are going to present the relationship between sum of kth powers of natural numbers and sum of (k–1) th powers of natural numbers using the differential operator and associated recurrence relation. Interestingly, the Bernoulli numbers which occur frequently in mathematical analysis, play an important role in establishing this relationship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信