地球磁场感应模块的修正季节分解变化

S. A. Imashev, S. V. Parov
{"title":"地球磁场感应模块的修正季节分解变化","authors":"S. A. Imashev, S. V. Parov","doi":"10.17587/it.30.59-67","DOIUrl":null,"url":null,"abstract":"In this paper, we present a modification of the classic method of seasonal decomposition of the time series, in particular its application for the analysis of geomagnetic data. Seasonal decomposition is a powerful tool for time series analysis, but its classic implementation does not always provide accurate results when the time series contains amplitude outliers and prolonged gaps. We propose a modified approach to solve this task of seasonal decomposition, by applying an average daily profile. This ensures the extraction of various anomalies in the residual component of the decomposition, in particular, global and contextual outliers, as well as disturbances due to magnetic storms in the variations of geomagnetic field induction module. Keywords: geomagnetic field, seasonal decomposition, data gaps, autocorrelation function, residual component, outliers, magnetic storm, DST index","PeriodicalId":504905,"journal":{"name":"Informacionnye Tehnologii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Seasonal Decomposition Variations of Earth Magnetic Field Induction Module\",\"authors\":\"S. A. Imashev, S. V. Parov\",\"doi\":\"10.17587/it.30.59-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a modification of the classic method of seasonal decomposition of the time series, in particular its application for the analysis of geomagnetic data. Seasonal decomposition is a powerful tool for time series analysis, but its classic implementation does not always provide accurate results when the time series contains amplitude outliers and prolonged gaps. We propose a modified approach to solve this task of seasonal decomposition, by applying an average daily profile. This ensures the extraction of various anomalies in the residual component of the decomposition, in particular, global and contextual outliers, as well as disturbances due to magnetic storms in the variations of geomagnetic field induction module. Keywords: geomagnetic field, seasonal decomposition, data gaps, autocorrelation function, residual component, outliers, magnetic storm, DST index\",\"PeriodicalId\":504905,\"journal\":{\"name\":\"Informacionnye Tehnologii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacionnye Tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/it.30.59-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacionnye Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/it.30.59-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了对时间序列季节分解这一经典方法的修改,特别是将其应用于地磁数据分析。季节分解是时间序列分析的有力工具,但当时间序列包含振幅离群值和长期间隙时,其经典实施方法并不总能提供准确的结果。我们提出了一种改进的方法,通过应用日平均剖面来解决季节分解问题。这可确保提取分解残余部分中的各种异常情况,特别是全局和上下文异常值,以及地磁场感应模块变化中的磁暴干扰。关键词:地磁场;季节分解;数据间隙;自相关函数;残差分量;异常值;磁暴;DST 指数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Seasonal Decomposition Variations of Earth Magnetic Field Induction Module
In this paper, we present a modification of the classic method of seasonal decomposition of the time series, in particular its application for the analysis of geomagnetic data. Seasonal decomposition is a powerful tool for time series analysis, but its classic implementation does not always provide accurate results when the time series contains amplitude outliers and prolonged gaps. We propose a modified approach to solve this task of seasonal decomposition, by applying an average daily profile. This ensures the extraction of various anomalies in the residual component of the decomposition, in particular, global and contextual outliers, as well as disturbances due to magnetic storms in the variations of geomagnetic field induction module. Keywords: geomagnetic field, seasonal decomposition, data gaps, autocorrelation function, residual component, outliers, magnetic storm, DST index
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信